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Background: Reward Learning Reward Learning Lattice: Data Sources and Applications in a Fixed Environment Basic Invariances: Beyond Potential Shaping
Reinforcement learning (RL) can learn effective behavioural policies given: Invariance: Given a function from the reward space f : R — X/, an invariance
f generating the return function restricted f generating the optimal state- f generating the state-action value func- 2 d : . :
is a reward transformation ¢t : R — R that preserves f, that is, such that
» an environment (states 8, actions .A, transition dynamics 5, ), and [ / generating the reward function itself ] [ to finite supported trajectory slices action value function (Q-function) tion (Q-function) based on a given policy P f
d f . R . S ./4 S R A trivial data generating process A data generating process for Not itself a common data Like Q,, invariant to VR S R, f(t(R>) — f(R) .
> arewar unction . X X — o or application. The invariance — expert ratings of finite — generating process, but an (_) S’-redistribution.
partition is the partition into trajectories. Invariant only to intermediate stage for many Other QQ-functions have the We describe the invariance partition Of f as a set Of transformations T SUCh that
) st . . singletons, which refines all masks of unsupported data generating processes based same invariances, including, P
It's difficul I f d df f | k
t's dithicult to manua Yy SpPecCity a good rewar unctions tor compliex tasks. invariance partitions. transitions. on expert behaviour. Invariant notably, the soft )-function, f(R) — f(R/) |f and On|y |f E]t & T R/ — t(R)
. i Corresponds to no ambiguity * to S'-redistribution. Qg, which satisfies a modified !
Reward |earn|ng: Why not learn reward functions from data? and no ambiguity tolerance. Bellman equation. ] | e e et e e e e i e e e e et e e e e e et et e e e e e e e e e e e e et e et e e e e e e e e et e et
» Consider a reward space R = { R|R:S x A xS — R}, and / l l I??EIISIC lr;vz;rlar;_ces. These cj,etz of tFr?nsfor)matlons generate the invariance par-
titions ot the objects we stuay (see Figure).
> a data-generating process f : R — X representing a data source. I _ _ ] ) o _
f generating pairwise Boltzmann dis- f generating the return func- 1. Potential shaping: shifting reward between states along a trajectory.
What data source? Any At Gt Containing reward-relevant information. .tributionfs over finite suppo.rted tra- t.ion re.stricte.d to sup.pc_)r.ted infi- f generating the Boltzmann-rational policy f generating the set of all optimal policies . ) ] . _ _
jectory slices (based on their return) nite trajectories from initial states 2. k-Initial potentlal shapmg: a speC|a| case of potentlal shaplng.
Many SUCh data sources have been proposed o ExampleS: A data generating process for A data generating process for A data generating process for an A data generating process for
preference comparisons with expert ratings of full trajectories. | el s based on @ wth Battzmonn sampling expert policies, 3. S’-Redistribution: shifting reward between destination states
» Inverse RL: Optimal/noisy policies or trajectories. Boltzmann noise. Boltzmann Invariant to A-initial potential * noise. Also a potential application assuming each expert policy ' . '
noise reveals relative cardinal shaping with £ = 0 and masks of learnt reward. Invariant to S'- supports a random subset of .. . . . o
. . . . . information about return. Same of unreachable transitions ; z redistribution and potential shaping ; i optimal actions in each state. 4. P05|t|ve ||near scalmg: scallng a|| rewards by d pOSItIVG constant.
» Human feedback: Optlmal/n0|sy preferences or ratlngs of traJectones. invariances as G¢: masks of (transitions not included in any The maximum causal entropy PogCy * Also a potential application.
- unsupported transitions supported initial trajectory) el Sl Flas the same invariances as .. 5. Zero-preserving monotonic transformations: preserving the order
After reward learning, you can use your learnt reward function to do RL (among and sign of transition rewards.
other potential applications of a learnt reward function). | oo :
6. Optimality-preserving transformations: preserving optimal actions.
. .. : f generating pairwise Boltzmann dis- f generating the distribution over . .
Partial Identifiabilit ftf:.r;i;:mi“t:z EzzzlegrzzriE;i(:\i;:::;e : tributions over supported infinite initial infinite initial trajectories induced f ger:)e;at;nf :. m:|X|r2ﬁ2y 1. Masking transitions: transforming certain transition rewards freely.
y . U . trajectories (based on their return) by the Boltzmann-rational policy PP G PRI 9 )
A data generating process for hoise— A data generating process for ﬁ)q::z;agenfgjt:cnf pr;)c;ssltforatra{ec_ A data ge_nerating process for an
Partial identifiability: For some data sources, many reward functions generate e e oo e | € preference Comparisons With | e} <+ r_atlaonall_exi_ert. Ao o poten e il st e eoote Key Take aways
o o S 2 vironment: Always invariant to pos- . : tial application. Invariant to S'- with some probability. Also a poten-
IndIStlngUIShable data' -< itive Iine:r sﬁlliné and masistofpun- -< relative cardinal information redistr:i[;)ution, potential shaping, and tiatlhapplicatF;onl? ll)nlviyriaﬁ'l to sziﬁ
. supported transitions. At most, also . about return. Invariant to k- masks of unreachable transitions. tive linear scaling, S’-redistribution, . . ) . )
That is, for a data generating process f : R — A producing infinite data sets * invariant to zero-preerving mono- ; /6 iniial potential shaping, masks The distribution induced by the max * potental shaping, and some er Fixed environment: |s ambiguity a problem if we want to learn rewards and
onic transformations. . — of unreachable transitions. > 7 Tg has optimality-preserving transformations. . .
from reward functions: ; the same invariances then conduct RL in the same environment?
AR, R’ € R such that f(R) = f(R). \ + objects above this line refine A, in all environments- \ \ l » Mostly, no: most data sources refine the outcome of RL (optimal policy
oo _ _ _ g trajectory distribution), meaning their ambiguity is tolerable.
Reward amb|gu|ty: No reward Iearnmg algonthm can resolve this fundamental o .f generating the total preorder over : f generating the to.tal preorder over f generating the distribution over in-
ambiguity (Without additional assumptions). f — g indicates f < g infinite trajectories ('base('i on thelr.r.eturn) distributions over infinite initial trajec- fln.lte traJectorles. mduc.ed by a max- > Exception: Optimal trajectory comparisons have additional
_ [upper bound on invariance partition] tories (based on their expected return) imally supportive optimal policy . . f . biguity i :
........................................................................ Meaning: A data generating process for A data generating process for A data generating process for tra. zero-preserving monotonic transtormation ambiguity In some environments.
- - - - - - oy T . iseless optimal preference preference comparisons over jectories sampled from an optimal
Characterising ambiguity /partial identifiability: We study the extent of « Data source f contains no more re- o : . g | — expert. Also a potential application. i : : :
_ g g y/p y y ward ambizuity than data Source g, comparisons. Invariant to '°tt“-r_'e:"_°ftraJeth)”eS- Invariant Invariant to positive linear scaling, Transfer learning: What if we learn rewards in one environment, and then
guity g k-initial potential shaping, to k-initial potential shapin '_redistributi i i
this phenomenon for various data sources . ; P ping, §'-redistribution, potential shaping, :
. Apolicati tolerates th d positive linear scaling, masks of positive linear scaling, and and some other optimality-preserving Cond uct RL In another?
c .. e * pp.lca. |or? g tolerates the rewar * unreachable transitions, and masks of unreachable transitions * transformations, including allowing
> We formallse 3 data SOUI’CG’S amblgUlty by partltlonlng the reward space ambiguity in data source f. — other transformations (open (by vNM utility theorem). certain reward changes in states un- L . | . . . . .
_ _ o0 S F problem to characterise them). ; visited by optimal trajectories. » Now, ambiguity is a problem! In situations where dynamics differ, reward is
into sets of functions that lead to indistinguishable outputs. . : : .
................................................................................................................................................ essentially unconstrained (assuming destination-dependent rewards).
» Invariance partition of a data-generating process f: . . - "y ' - - : T : "
Figure: Invariance partition refinement induces a lattice structure on functions from the reward space, based on their invariance partitions Caveat: Some important limitations / directions for future work:
{ {ReR|f(R)=f(R)}|RE€ 73} , (see box below). In this figure, we display the lattice structure for various objects derived from reward functions, given a fixed environment. _ _ o _
_ _ _ o _ _ _ _ _ _ _ o » We consider environments with finite state and action spaces.
We describe each invariance partition in terms of several basic sets of invariances (see top right box). In particular, the invariance partition
i iti i ‘nvari - - - - L S L » Learning using these models assumes that the data-generating process is
> We describe the partition by enumerating the invariances of f. of the object is generated by transformations from the listed sets, and combinations thereof. For full definitions of the derivations and 5 156 <8 & PIoce
N J _ £ the | _ e full well specified. However, human agents often aren’t (Boltzmann) rational.
precise statements ot the invariances, see the tull paper. L )

Tolerating Partial ldentifiability

More Information

Unified Framework for Comparing Data Sources and Applications

Invariance in applications: For some applications of learnt reward functions,

many reward functions generate the same outcomes. Invariance partition refinement: Let f and g Comparing two data sources: If f and f’ are Incomparable ambiguity: Invariance partition VV 24879
That is, for an application computing a function g : R — ) from reward be functions from R, with invariance partitions II; two data generating processes, then: refinement is a partial order: Some objects are € are POSter :
functions to outcomes: and Hg. Then f refines g, written f < g, if and | incomparable (f £ f" and f" £ f). i /e c:C/v1rtual/2023/poster/24879
AR, R’ € R such that g(R) = g(R). only if: < <1;> / contjms T)O m_:re Incomparable data sources each conflate different (or scan the QR code over there —)

R .. . : : L VP eTl;,3Q € 11,; P C Q. F=f rewarc am /lgm y reward functions—neither is ‘less ambiguous’.

eward ambiguity tolerance: it doesn't matter for this application if a reward 9 than f'. Correspondence to Joar Skalse (joar.skalse@cs.ox.ac.uk) +
learning algorithm can't distinguish such reward functions. In other words, f refines g if all of the partition Complementary ambiguity: Incomparable data Matthew Farrugia-Roberts (matt fjarru.gia©unimellb édl; )

........................................................................ ceIIs in Hf are SUbSGtS Of some partition ceII in Hg- Evaluating data SOUrCes for applications: |f f sources also. distinguish different rewa!'d functi.ons. L c . . . : )

Characterising ambiguity tolerance: We study the extent of this tolerance = — - _ & & dit menEretine mrecss e o 5 an spElictier They _co.ntaln complementary reward mforma.t/oCr.
for various applications. function. then: Combining such sources always reduces ambiguity!
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> We f I lication’ bicui | b L h invariance partition of f invariance partition of g | bl | ; bicuit
e tormalise an application s ambiguity tolerance by partitioning the (partition of R) (partition of R) @ telarts dic ncomparable = complementary ambiguity

reward space into sets of functions that lead to indistinguishable outcomes.
MR SpRRs L Hne Rl - f=g <  reward ambiguity of ﬁ : A

» Invariance partition of an application function g: : data source f.

{{R eRIg(R) =g(R)} ReR}.

See Figure for refinements between common data ﬁ =<
sources and applications in a fixed environment. :

» We describe the partition by enumerating the invariances of g. N J




