
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Invariance in Policy Optimisation and Partial Identifiability in Reward Learning
Joar Skalse=,∗,1,2 Matthew Farrugia-Roberts=,∗,3 Stuart Russell4 Alessandro Abate1 Adam Gleave∗,5

=equal contribution ∗work completed at CHAI, UC Berkeley 1CS, Oxford University 2FHI, Oxford University 3CIS, University of Melbourne 4CHAI, UC Berkeley 5FAR AI, Inc.

Background: Reward Learning
Reinforcement learning (RL) can learn effective behavioural policies given:
▶ an environment (states S, actions A, transition dynamics δ, …), and
▶ a reward function R : S ×A× S → R.

It’s difficult to manually specify a good reward functions for complex tasks.
Reward learning: why not learn reward functions from data?
▶ Consider a reward space R = {R |R : S ×A× S → R }, and
▶ a data-generating process f : R → X representing a data source.

What data source? Any data sources containing reward-relevant information.
Many such data sources have been proposed. Examples:
▶ Inverse RL: Optimal/noisy policies or trajectories.
▶ Human feedback: Optimal/noisy preferences or ratings of trajectories.

After reward learning, you can use your learnt reward function to do RL (among
other potential applications of a learnt reward function).

Partial Identifiability
Partial identifiability: For some data sources, many reward functions generate
indistinguishable data.
That is, for a data generating process f : R → X producing infinite data sets
from reward functions:

∃R,R′ ∈ R such that f (R) = f (R′).

Reward ambiguity: No reward learning algorithm can resolve this fundamental
ambiguity (without additional assumptions).

Characterising ambiguity/partial identifiability: We study the extent of
this phenomenon for various data sources.
▶ We formalise a data source’s ambiguity by partitioning the reward space

into sets of functions that lead to indistinguishable outputs.
▶ Invariance partition of a data-generating process f :{

{R′ ∈ R | f (R) = f (R′) }
∣∣∣R ∈ R

}
.

▶ We describe the partition by enumerating the invariances of f .

Tolerating Partial Identifiability
Invariance in applications: For some applications of learnt reward functions,
many reward functions generate the same outcomes.
That is, for an application computing a function g : R → Y from reward
functions to outcomes:

∃R,R′ ∈ R such that g(R) = g(R′).

Reward ambiguity tolerance: it doesn’t matter for this application if a reward
learning algorithm can’t distinguish such reward functions.

Characterising ambiguity tolerance: We study the extent of this tolerance
for various applications.
▶ We formalise an application’s ambiguity tolerance by partitioning the

reward space into sets of functions that lead to indistinguishable outcomes.
▶ Invariance partition of an application function g:{

{R′ ∈ R | g(R) = g(R′) }
∣∣∣R ∈ R

}
.

▶ We describe the partition by enumerating the invariances of g.

Reward Learning Lattice: Data Sources and Applications in a Fixed Environment

f generating the reward function itself

R
A trivial data generating process
or application. The invariance
partition is the partition into
singletons, which refines all
invariance partitions.
Corresponds to no ambiguity
and no ambiguity tolerance.

f generating the return function restricted
to finite supported trajectory slices

Gζ

A data generating process for
expert ratings of finite
trajectories. Invariant only to
masks of unsupported
transitions.

f generating the return func-
tion restricted to supported infi-

nite trajectories from initial states

Gξ

A data generating process for
expert ratings of full trajectories.
Invariant to k-initial potential
shaping with k = 0 and masks
of unreachable transitions
(transitions not included in any
supported initial trajectory).

f generating pairwise Boltzmann dis-
tributions over finite supported tra-
jectory slices (based on their return)

⪯ζ
β

A data generating process for
preference comparisons with
Boltzmann noise. Boltzmann
noise reveals relative cardinal
information about return. Same
invariances as Gζ : masks of
unsupported transitions.

f generating the total preorder over finite
trajectory slices (based on their return)

⪯ζ
⋆

A data generating process for noise-
less optimal preference comparisons.
Exact invariances depend on the en-
vironment: Always invariant to pos-
itive linear scaling and masks of un-
supported transitions. At most, also
invariant to zero-preserving mono-
tonic transformations.

f generating pairwise Boltzmann dis-
tributions over supported infinite initial

trajectories (based on their return)

⪯ξ
β

A data generating process for
preference comparisons with
Boltzmann noise. Noise reveals
relative cardinal information
about return. Invariant to k-
initial potential shaping, masks
of unreachable transitions.

f generating the total preorder over
infinite trajectories (based on their return)

[upper bound on invariance partition]

⪯ξ
⋆

A data generating process for
noiseless optimal preference
comparisons. Invariant to
k-initial potential shaping,
positive linear scaling, masks of
unreachable transitions, and
other transformations (open
problem to characterise them).

f generating the total preorder over
distributions over infinite initial trajec-
tories (based on their expected return)

⪯ξ
∆

A data generating process for
preference comparisons over
lotteries of trajectories. Invariant
to k-initial potential shaping,
positive linear scaling, and
masks of unreachable transitions
(by vNM utility theorem).

f generating the optimal state-
action value function (Q-function)

Q⋆

Not itself a common data
generating process, but an
intermediate stage for many
data generating processes based
on expert behaviour. Invariant
to S ′-redistribution.

f generating the state-action value func-
tion (Q-function) based on a given policy

Qπ

Like Q⋆, invariant to
S ′-redistribution.
Other Q-functions have the
same invariances, including,
notably, the soft Q-function,
QH

β , which satisfies a modified
Bellman equation.

f generating the Boltzmann-rational policy

π⋆
β

A data generating process for an
expert policy, assuming experts select
actions based on Q⋆ with Boltzmann
noise. Also a potential application
of learnt reward. Invariant to S′-
redistribution and potential shaping.
The maximum causal entropy policy,
πH
β , derived similarly but from QH

β ,
has the same invariances.

f generating the distribution over
infinite initial trajectories induced
by the Boltzmann-rational policy

∆⋆
β

A data generating process for trajec-
tories sampled from a Boltzmann-
rational expert. Also a poten-
tial application. Invariant to S′-
redistribution, potential shaping, and
masks of unreachable transitions.
The distribution induced by the max-
imum causal entropy policy πH

β has
the same invariances.

f generating a maximally
supportive optimal policy

π⋆
A data generating process for an
expert policy, assuming experts se-
lect all optimal actions in each state
with some probability. Also a poten-
tial application. Invariant to posi-
tive linear scaling, S′-redistribution,
potential shaping, and some other
optimality-preserving transformations.

f generating the set of all optimal policies

{π}⋆
A data generating process for
sampling expert policies,
assuming each expert policy
supports a random subset of
optimal actions in each state.
Also a potential application.
Has the same invariances as π⋆.

f generating the distribution over in-
finite trajectories induced by a max-

imally supportive optimal policy

∆⋆

A data generating process for tra-
jectories sampled from an optimal
expert. Also a potential application.
Invariant to positive linear scaling,
S′-redistribution, potential shaping,
and some other optimality-preserving
transformations, including allowing
certain reward changes in states un-
visited by optimal trajectories.

objects above this line refine ∆⋆ in all environments

f → g indicates f ⪯ g

Meaning:
• Data source f contains no more re-

ward ambiguity than data source g.
• Application g tolerates the reward

ambiguity in data source f .

Figure: Invariance partition refinement induces a lattice structure on functions from the reward space, based on their invariance partitions
(see box below). In this figure, we display the lattice structure for various objects derived from reward functions, given a fixed environment.
We describe each invariance partition in terms of several basic sets of invariances (see top right box). In particular, the invariance partition
of the object is generated by transformations from the listed sets, and combinations thereof. For full definitions of the derivations and
precise statements of the invariances, see the full paper.

Unified Framework for Comparing Data Sources and Applications
Invariance partition refinement: Let f and g
be functions from R, with invariance partitions Πf

and Πg. Then f refines g, written f ⪯ g, if and
only if:

∀P ∈ Πf , ∃Q ∈ Πg;P ⊆ Q.

In other words, f refines g if all of the partition
cells in Πf are subsets of some partition cell in Πg.

Example of invariance partition refinement
invariance partition of f

(partition of R)

⪯

invariance partition of g
(partition of R)

Comparing two data sources: If f and f ′ are
two data generating processes, then:

f ⪯ f ′ ⇔ f contains no more
reward ambiguity

than f ′.

Evaluating data sources for applications: If f
is a data generating process and g is an application
function, then:

f ⪯ g ⇔ g tolerates the
reward ambiguity of

data source f .

See Figure for refinements between common data
sources and applications in a fixed environment.

Incomparable ambiguity: Invariance partition
refinement is a partial order: Some objects are
incomparable (f ⪯̸ f ′ and f ′ ⪯̸ f).
Incomparable data sources each conflate different
reward functions—neither is ‘less ambiguous’.

Complementary ambiguity: Incomparable data
sources also distinguish different reward functions.
They contain complementary reward information.
Combining such sources always reduces ambiguity!

Incomparable ⇒ complementary ambiguity

⪯̸

⪯̸

∧ =

≺ ,

Basic Invariances: Beyond Potential Shaping
Invariance: Given a function from the reward space f : R → X , an invariance
is a reward transformation t : R → R that preserves f , that is, such that

∀R ∈ R, f (t(R)) = f (R).

We describe the invariance partition of f as a set of transformations T such that
f (R) = f (R′) if and only if ∃t ∈ T ;R′ = t(R).

Basic invariances: These sets of transformations generate the invariance par-
titions of the objects we study (see Figure).

1. Potential shaping: shifting reward between states along a trajectory.
2. k-Initial potential shaping: a special case of potential shaping.
3. S ′-Redistribution: shifting reward between destination states.
4. Positive linear scaling: scaling all rewards by a positive constant.
5. Zero-preserving monotonic transformations: preserving the order

and sign of transition rewards.
6. Optimality-preserving transformations: preserving optimal actions.
7. Masking transitions: transforming certain transition rewards freely.

Key Takeaways
Fixed environment: Is ambiguity a problem if we want to learn rewards and
then conduct RL in the same environment?
▶ Mostly, no: most data sources refine the outcome of RL (optimal policy

trajectory distribution), meaning their ambiguity is tolerable.
▶ Exception: Optimal trajectory comparisons have additional

zero-preserving monotonic transformation ambiguity in some environments.

Transfer learning: What if we learn rewards in one environment, and then
conduct RL in another?
▶ Now, ambiguity is a problem! In situations where dynamics differ, reward is

essentially unconstrained (assuming destination-dependent rewards).

Caveat: Some important limitations / directions for future work:
▶ We consider environments with finite state and action spaces.
▶ Learning using these models assumes that the data-generating process is

well specified. However, human agents often aren’t (Boltzmann) rational.

More Information

We are poster 24879
https://icml.cc/virtual/2023/poster/24879

(or scan the QR code over there →)

Correspondence to Joar Skalse ⟨joar.skalse@cs.ox.ac.uk⟩ +
Matthew Farrugia-Roberts ⟨matt.farrugia@unimelb.edu.au⟩.


