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Abstract

Neural networks learn to implement input–output functions based on data. Their ability
to do so has driven applications in many task domains. However, a solid theoretical under-
standing of deep learning remains elusive. For example, classical theoretical frameworks
fail to account for the performance of large neural networks despite their capacity to im-
plement overly complex functions. There is a need for basic theoretical research clarifying
the relationship between structure, function, and complexity in neural networks.

For almost all neural networks, the relationship between structure and function is
well understood: all parameters implementing a given function are related by simple
operations such as exchanging the weights of units. However, for the remaining degenerate
neural networks, there are additional parameters implementing the same function. Since
some of these additional parameters correspond to smaller, less complex neural networks,
degenerate neural networks are positioned to play a crucial role in understanding neural
network learning. However, prior work investigating neural network structures has largely
emphasised the generic non-degenerate case.

In light of this situation, I present a comprehensive theoretical investigation of struc-
tural degeneracy in a simple family of neural networks (single-hidden-layer biased hyper-
bolic tangent networks). I develop an algorithmic framework for analysing degeneracy,
including an ideal measure of degeneracy called the rank of a neural network (the min-
imum number of hidden units required to implement an identical function). Using this
framework, I characterise the class of functionally equivalent parameters including in the
degenerate case, extending prior work that has only considered the non-degenerate case. I
show that in the degenerate case, the functional equivalence class is piecewise linear path
connected. Moreover, I study a measure of approximate degeneracy, the parametric ap-
proximate rank, based on proximity to low-rank parameters. Drawing on computational
complexity theory, I show that determining such proximity is an NP-complete problem.

The insights into structural degeneracy developed in this thesis have the potential
to clarify topics of current interest in deep learning. More broadly, this thesis lays a
foundation for future work developing efficient measures of degeneracy and empirically
investigating the role of degeneracy in deep learning.
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Chapter 1

Introduction

I felt that he must have some solid grounds for the assured
and easy demeanour with which he treated the singular
mystery which he had been called upon to fathom.

—Dr. John H. Watson, “A Case of Identity,”
The Adventures of Sherlock Holmes

In machine learning, one leverages data to automatically construct software systems. The
subfield of deep learning studies systems called neural networks, comprising intercon-
nected layers of simple computational units. Neural networks learn to implement input–
output functions by forming hierarchical representations of patterns in data (Schmidhu-
ber, 2015; LeCun et al., 2015; Goodfellow et al., 2016).

In practice, neural networks are capable of learning complex functions from many
kinds of data. Deep learning has thus contributed to several recent milestones in artifi-
cial intelligence (e.g., Mnih et al., 2015; Silver et al., 2018; Brown et al., 2020; Jumper
et al., 2021). Moreover, deep learning has driven a broadening range of applications in in-
dustrial, scientific, medical, and consumer technology (Jordan and Mitchell, 2015)—with
correspondingly increasing real-world impacts.

At the same time, the mechanisms behind the learning capabilities of neural networks
remain poorly understood. For example, classical theoretical frameworks fail to account
for empirically observed capabilities, due in part to the capacity of neural networks to
represent patterns of arbitrary complexity (Zhang et al., 2017; 2021). Moreover, the vast
scale of practical neural networks raises the financial and environmental costs of deep
learning (see, e.g., Strubell et al., 2019; Ahmed and Wahed, 2020; Crawford, 2021), and
makes the resulting learned software systems difficult for humans to understand (see, e.g.,
Lipton, 2018; Rudin, 2019; Molnar, 2022). To address these and other challenges, there
is a pressing need for basic theoretical research that aims to enhance our understanding
of neural network structure, function, and learning.
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Neural network structure and function

A neural network can be understood at one level as a graph data structure, comprising
simple computational units connected by weighted edges. In practice, this structure is
encoded as a parameter—a high-dimensional vector specifying the edge weights and unit
properties. At another level, a neural network implements a mathematical function, with
the units propagating input signals through the graph to produce outputs. Deep learning
studies methods for adaptively deriving from data (“learning”) a parameter such that
the implemented function performs some complex task, such as classifying images (e.g.,
Cireşan et al., 2011; Krizhevsky et al., 2012) processing natural language (e.g., Brown
et al., 2020) or making sequential decisions (e.g., Mnih et al., 2015; Silver et al., 2018).

Of central importance in forming a deeper understanding of neural networks is study-
ing the link between neural network structure and function. This is the topic of neural
network geometry, on which there is a large existing literature. For example, theorists
have shown that neural networks are capable of approximately implementing many func-
tions (see universal approximation results, e.g., Cybenko, 1989; Hornik et al., 1989; Leshno
et al., 1993), including highly complex functions given enough computational units (see,
e.g., Barron, 1993; Murata, 1996; Mhaskar, 1996; Montúfar et al., 2014).

A further central question in neural network geometry is the functional equivalence
question: when do two neural network structures implement the same function? Func-
tionally equivalent parameters can be generated by simple operations, such as the unit
exchange and negation operations exemplified in Figure 1.1. Moreover, for many classes
of neural networks, theorists have shown that there are no other functionally equiva-
lent structures—as long as the neural networks satisfy various non-degeneracy conditions
(e.g., Sussmann, 1992; Chen et al., 1993; Fefferman, 1994; Phuong and Lampert, 2020).
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Figure 1.1: Three functionally equivalent neural network structures. See Sections 2.2
and 3.2 for a detailed introduction to neural networks. Left–middle: the weights for units
i and j have been exchanged. Middle–right: the weights for unit k have been negated.
Assuming the units respond as an odd function of their inputs (such as, for example, with
the hyperbolic tangent function) these three structures implement the same function.
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Degenerate neural networks

The aforementioned non-degeneracy conditions include almost all neural networks. How-
ever, there are certain degenerate neural networks for which there is a richer set of equiv-
alent structures (beyond just those reachable by unit exchanges and negations, or similar
basic operations), as exemplified in Figure 1.2.

Most existing work on the functional equivalence question has excluded the degenerate
case. A commonly cited justification is that degenerate structures are atypical: if a neural
network parameter is selected at random, there is effectively zero probability that it will
be degenerate (formally, the set of degenerate parameters is a measure zero subset of the
parameter space, or, roughly, it has zero volume; see, e.g., Phuong and Lampert, 2020).

However, this atypicality does not mean degenerate neural networks are irrelevant to
deep learning. First, the learning process applies a non-random selection pressure on neu-
ral network structures, so one cannot rule out a priori atypical structures among learned
networks. Second, degenerate neural network geometry can have practical consequences
for non-degenerate networks that are, nevertheless, approximately degenerate.

Degenerate neural networks may indeed play an important role in deep learning.
For some classes of neural networks, degeneracy corresponds to non-minimality, that is,
degenerate structures implement functions that could be implemented with fewer units
(e.g., Sussmann, 1992). Degeneracy could therefore help explain the empirical success of
learned neural networks despite their apparent complexity.

The occurrence of degenerate structures among learned neural networks is an empirical
hypothesis that should be tested, and the role played by degeneracy in deep learning
remains to be clarified. The first step in this research direction is to establish a deeper
understanding of structural degeneracy than is currently available in the literature.
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Figure 1.2: Examples of functionally equivalent degenerate neural network structures.
See Section 2.4 for a definition of degenerate neural networks. Left–middle: since units
i and j have the same incoming weights, their outputs are identical, so their outgoing
weights can be traded off. Moreover, since unit k has zero outgoing weight, the func-
tion implemented is independent of its incoming weights. Right: accordingly, the same
function could be implemented by a neural network with two fewer units.
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Algorithmic geometry and topology of degenerate neural networks

In this thesis, I present a comprehensive theoretical investigation of structural degener-
acy in a simple family of neural networks (namely, single-hidden-layer biased hyperbolic
tangent neural networks). Within this setting, my contributions are as follows.

1. In Chapter 4 (“Neural Network Reduction and Rank”), I develop an algorithmic
framework for analysing and measuring degeneracy, including defining the rank
(the minimum number of hidden units required to implement an identical function).
Using this framework, I show that sets of bounded rank parameters are closed and
algebraic, and sets of bounded rank functions are highly non-convex.

2. In Chapter 5 (“Degenerate Neural Network Geometry”), I completely answer the
functional equivalence question, including in the degenerate case, characterising the
functional equivalence class by inverting the algorithms from Chapter 4. I also show
that degenerate functional equivalence classes are piecewise linear path connected.

3. In Chapter 6 (“Degenerate Neighbourhoods in Parameter Space”), I introduce the
parametric approximate rank, a measure of approximate degeneracy based on prox-
imity to low-rank parameters (the minimum rank of nearby parameters).1

Drawing on computational complexity theory, I show that detecting such proximity
is an NP-complete problem. This result involves a multi-stage problem reduction
from Boolean satisfiability, via a restricted variant of Boolean satisfiability and a
novel problem involving partitioning points in the plane into small squares.

The remainder of the thesis is organised as follows. In Chapter 2 (“Background”), I provide
an elementary introduction to deep learning and neural networks, I review the existing
literature on non-degenerate neural networks, and I review motivations for studying the
geometry and topology of degenerate neural networks.

In Chapter 3 (“Formal Preliminaries”), I document important notational conventions,2

formally introduce the setting for my analysis, and review the foundational results of
Sussmann (1992) characterising degenerate networks in this setting. Moreover, I review
the computational complexity theory needed to support Chapter 6.

In Chapter 7 (“Discussion”), I outline promising directions for future work revealed
by my investigation, including extensions beyond simple neural networks, developing
efficient approximation algorithms for measuring approximate degeneracy, and applying
a degeneracy-aware perspective to clarify topics of current interest in deep learning.

1Appendix A additionally considers the L2 neighbourhoods of low-rank functions, introducing the
functional approximate rank and relating it to the parametric approximate rank.

2Appendix B, listing all definitions and symbols used throughout the thesis (alongside all figures,
tables, problems, algorithms, and major theorems), may serve as a helpful reference for the reader.
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Chapter 2

Background

This chapter reviews in more detail the background context and motivations outlined
in the introduction. In Section 2.1, I establish the broad context and motivation for
my thesis. I introduce the field of deep learning and survey some of the applications
of the techniques studied within this field, as well as important challenges facing the
field motivating theoretical work aiming for a clearer understanding of deep learning. In
Section 2.2, I provide an elementary introduction to neural networks—the central object
of study in deep learning, this thesis, and related work.

Readers already familiar with deep learning and neural networks1 are invited to ad-
vance to Sections 2.3 to 2.5, wherein I turn to the direct motivation and specific context
for this thesis:

1. In Section 2.3, I review the existing literature on neural network geometry, illus-
trating a clear research gap in terms of degenerate neural networks.

2. In Section 2.4, I reframe and synthesise various perspectives from this prior work to
arrive at a clear characterisation of degenerate neural networks as neural network
structures with redundant units.

3. In Section 2.5, I conclude the chapter by reviewing various motivations for studying
degenerate neural networks.

The discussion in this chapter is mainly conceptual. A technical introduction to the
family of neural networks studied in this thesis, along with the most relevant existing
mathematical results from neural network geometry that apply in this setting, is deferred
until Chapter 3 (“Formal Preliminaries”).

1For example, readers not among the explicitly intended audience for Sections 2.1 and 2.2 include those
who already understand the phrases “neural networks display successful performance in a wide range of
task domains despite their capacity to learn to memorise essentially arbitrarily complex patterns in data”
and “I study neural networks with a fully-connected feed-forward architecture with a single hidden layer
of biased units using the hyperbolic tangent activation function.”
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2.1 Machine learning and deep learning

Over recent decades, the field of machine learning, and, in particular, the subfield of
deep learning, have risen to prominence as paradigms for creating software systems for
practical applications. In this section, I introduce machine learning and deep learning
and survey some of their applications, impacts, and challenges.

Learning machines, or, data-driven software engineering

Machine learning studies and develops software systems that learn to perform tasks based
on data. The field is named by analogy to how humans (and other animals) learn through
experience. In this analogy, one casts software systems as intelligent artefacts, or agents,
using experience to improve their performance (Mitchell, 2006; Jordan and Mitchell, 2015;
Russell and Norvig, 2021, §19). This language and this perspective go back, at least, to
Turing (1950, §7), who proposed developing a machine with the intelligence of a human
adult through a two-stage process, first building a machine with the relevant cognitive
architecture of a human child, and then subjecting the system to experiences mirroring
a human child’s development.

The above anthropomorphic conceptualisation of machine learning is far from the
only available perspective. Machine learning can alternatively be understood in terms of
statistics (Breiman, 2001; Hastie et al., 2009), probabilistic inference (Devroye et al., 1996;
Murphy, 2012), information theory (MacKay, 2003), pattern recognition (Ripley, 1996;
Bishop, 2006), optimisation (Mitchell, 2017), cybernetics (Wiener, 1961; 1964, p. 14), and
the philosophy of science (Rathmanner and Hutter, 2011).

Still another perspective views machine learning as a data-driven software engineering
methodology (Mitchell, 2006; Norvig, 2016; Karpathy, 2017). According to this perspec-
tive, one develops a software system for a given task by, for example:2

1. assembling a data set comprising many examples of task inputs and outputs;

2. specifying an architecture comprising the high-level system structure (while omit-
ting many low-level details); and

3. conducting a learning process, automatically deriving (“learning”) the missing details
such that the system’s behaviour comes to match the examples in the data set.

The end result is a learned software system, whose behaviour is implicitly directed by
examples, as compared to a programmed software system, whose behaviour is specified in
deliberate and comprehensive detail with a programming language.

2This methodology corresponds to supervised learning, also called learning with a teacher, where
the desired inputs and outputs are included in the data set. Machine learning also studies techniques
for so-called unsupervised learning (learning from inputs only; see, e.g., Hastie et al., 2009, §14) and
reinforcement learning (learning by interacting with an environment; see, e.g., Sutton and Barto, 2018).
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Deep learning and neural networks

Machine learning research includes devising specific architectures and learning processes
that can successfully learn behaviours exemplified in certain kinds of data. Among many
available approaches, deep learning is an approach in which the architecture is a so-called
neural network (Schmidhuber, 2015; LeCun et al., 2015; Goodfellow et al., 2016). The
details of neural networks are central to this thesis, and I turn to them in Section 2.2.
For now, I offer a conceptual overview of deep learning.

The neural network architecture traces its original inspiration (along with its name)
to connectionist models of animal learning and cognition from neuroscience. Such models
view the brain as a directed, weighted graph of simple computational units (or neurons),
arranged so as to perform complex distributed computations by the propagation of signals
between connected units (McCulloch and Pitts, 1943). Moreover, learning in these models
corresponds to the strengthening and weakening of connection weights in response to
experience, so as to change the implemented computation (e.g., Hebb, 1949). Analogously,
the neural network system architecture is a connection graph of simple computational
units, with the connection weights to be found during the learning process.

As a well-known example, consider the animal visual system. This system is un-
derstood as comprising layers of neurons, where the neurons in early layers function to
detect simple sensory features such as edge patterns (Hubel and Wiesel, 1959; 1962), and
those in later layers detect higher-order features from these primitives (Hubel and Wiesel,
1965). This model influenced early deep learning architectures such as the neocognitron
(Fukushima, 1980) and the convolutional neural network (LeCun et al., 1989b;a). The
latter architecture, and, moreover, the fundamental principle of learning hierarchical rep-
resentations of inputs as a learning and computational strategy, remain central in deep
learning today (Schmidhuber, 2015; LeCun et al., 2015; Goodfellow et al., 2016).

Today, neuroscience is just one of many influences drawn upon by researchers in the
field of deep learning (Goodfellow et al., 2016, §1.2.1). The primary goal of the field
is to create effective software systems, so advances in the understanding of biological
learning and cognition serve as a guide, but are not considered constraints (Goodfellow
et al., 2016; Hassabis et al., 2017).3 For example, modern deep learning algorithms draw
heavily from the study of numerical optimisation methods, casting the learning process
as a high-dimensional optimisation problem in the space of all possible network weights
(Goodfellow et al., 2016; Bottou et al., 2018). The resulting computation is not necessarily
a plausible model for the adaptation of neural connection strengths in the brain.

3The related field of computational neuroscience develops neural network systems for the separate
purpose of understanding biological learning and cognition. In this field, biological plausibility is an
important constraint. While many aspects of modern deep learning techniques stray from strict biological
plausibility, insights from deep learning are still considered useful for computational neuroscience (see,
e.g., Marblestone et al., 2016; Richards et al., 2019; Lillicrap and Körding, 2019; Saxe et al., 2021).
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Applications and impacts of learned software systems

The above outline of machine learning and deep learning makes it clear that the de-
velopment process for learned software systems, as well as the systems themselves, can
be remarkably different from their artisanal counterparts. These differences carve out a
niche among possible applications within which machine learning is a more appropriate
methodology than developing software systems by programming (Mitchell, 2006; Karpa-
thy, 2017). In particular, there are many task domains for which examples of the desired
behaviour—that is, data—are abundant or can be feasibly collected. In these cases, ma-
chine learning’s reliance on data liberates one from having to specify a system’s behaviour
in comprehensive detail (as may be infeasible; Mitchell, 2006; Russell and Norvig, 2021,
§19).

Deep learning has played an integral part in recent breakthroughs of software capabil-
ities in several task domains meeting this description, including computer vision (Cireşan
et al., 2011; Krizhevsky et al., 2012), automatic speech recognition (Deng et al., 2013;
Yu and Deng, 2015), natural language processing (Vaswani et al., 2017; Brown et al.,
2020), game playing (Mnih et al., 2015; Silver et al., 2016; 2017; 2018; Vinyals et al.,
2019; OpenAI et al., 2019), and protein folding (Senior et al., 2020; Jumper et al., 2021).

Beyond these prominent examples, machine learning (especially deep learning) has
seen many further applications. For example, many routine digital activities involve
interaction with learned software systems. Learned software assists in ranking web search
results (Liu, 2011), blocking email spam (Mujtaba et al., 2017), and organising network
traffic (Boutaba et al., 2018). Learned software also helps secure digital infrastructure—
looking out for cyberattacks, intrusions, malware, and fraud (Joseph et al., 2019).

Machine learning also finds applications in domains outside of computing. Recent
literature surveys show example applications spanning domains as diverse as marketing
(Brei, 2020, §5) and agriculture (Liakos et al., 2018). Learned software is beginning to be
used as an aid for decision-making in healthcare, for diagnosis and treatment of ailments
physical (Qayyum et al., 2020) and psychological (Dwyer et al., 2018), and in various
aspects of the legal system (Surden, 2021). Moreover, machine learning has applications
in addressing grand societal challenges (Rudin and Wagstaff, 2014), including the global
fight against the coronavirus pandemic (Lalmuanawma et al., 2020).

The above applications hint at an important trend: learned software systems, es-
pecially neural networks, are increasingly positioned to have widespread and profound
real-world impacts. Depending on whether the learned systems function as intended,4

these impacts can range from vastly positive to vastly negative. Both possibilities moti-
vate research that addresses technical challenges facing deep learning.

4As with all automation, the impacts of learned software systems depend not only on their technical
correctness, but also on their design and use (cf. Parasuraman and Riley, 1997). Beyond the scope of
this review is an important and growing literature on the appropriate design and use of learned software

8



Some challenges facing deep learning

It is well understood that the leading performance of the deep learning approach has
been driven not only by advances in learning techniques but also, jointly, by the increased
provision of data and computational resources (Jordan and Mitchell, 2015; Goodfellow
et al., 2016, §1.2; Amodei and Hernandez, 2018; Hernandez and Brown, 2020; Sevilla
et al., 2022). To give a sense of scale, state-of-the-art performance typically requires data
sets with millions of examples (Goodfellow et al., 2016, p. 20), and the largest modern
architectures have many billions of connection weights to learn (e.g., Brown et al., 2020).

Accordingly, the neural network learning process, and the resulting neural networks
themselves, are highly complex. This complexity underpins several important technical
challenges facing the field, including the following.

1. Generalisation: will a complex learned neural network reliably behave as desired?

2. Efficiency: how can one address the problematic data and computational costs
involved in the learning process for complex neural networks?

3. Transparency: can a complex learned neural network be understood by a human?

I review each of these challenges in more detail below.

Challenge 1: Generalisation

Recall (cf. above) that a reliance on data liberates the machine learning practitioner from
having to comprehensively specify the desired behaviour of a software system. However,
with this freedom comes a question: will the resulting system respond as desired to novel
inputs (that is, those inputs not exemplified in the data set)? This is the question of
generalisation (see, e.g., Russell and Norvig, 2021, §19.1). Since almost all applications
of machine learning expect the learned software systems to handle novel inputs, good
generalisation is a fundamental requirement of all machine learning approaches.5,6

Guaranteeing generalisation in deep learning presents a particular challenge. Large
neural network architectures have the potential to realise essentially arbitrarily complex
behaviours. For example, Zhang et al. (2017; 2021) showed that standard deep learning
techniques easily learn neural networks that perfectly match outputs for data sets with no
underlying structure. This result is disconcerting, since it is unclear why such “memoris-
ing” neural networks couldn’t arise in practice, rather than neural networks that capture
underlying structure and generalise as (typically) desired.

systems (e.g., Russell et al., 2015; Hecht et al., 2018; Whittlestone et al., 2019; Mitchell et al., 2021).
5Generalisation requirements are especially stringent in domains such as computer security, in which

any undesirable behaviour can be exploited by an intelligent adversary (Joseph et al., 2019, §1.1).
6What counts as “good generalisation” depends on the desires of the system designers, which may

also be at odds with available data (cf. Mitchell et al., 2021, Figure 1; see also Footnote 4, above).
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Challenge 2: Efficiency

A second significant challenge facing deep learning stems from the costs associated with
each step in the process of producing a large-scale neural network. First, collecting large,
high-quality data sets often requires significant manual effort. After data collection, the
learning process (which may also be repeated as part of a trial-and-error search for an
appropriate architecture) involves significant computational resources. These costs limit
the accessibility of machine learning for groups without industrial-scale resources (Ahmed
and Wahed, 2020; Schwartz et al., 2020) and create resource-centralising network effects
(Bietti and Vatanparast, 2020).

Some of the costs of deep learning are external to the production process and are
rather borne by individuals, the environment, and society (Crawford, 2021). For exam-
ple, efficient data collection may come at the expense of poor working conditions for data
collectors (Gray and Suri, 2019), or the privacy and intellectual property rights of users
whose data is appropriated (Paullada et al., 2021). Moreover, there are significant envi-
ronmental as well as financial costs associated with the computational resources involved
in learning (Strubell et al., 2019; Schwartz et al., 2020; Patterson et al., 2021).

History has shown significant progress in improving the data- and computational effi-
ciency of learning techniques (Hernandez and Brown, 2020). Nevertheless, more progress
is needed to broaden the accessibility of and reduce the external impacts of deep learning.

Challenge 3: Transparency

The computations of the individual units and connections comprising a learned neural
network software system are readily understandable. However, due to the vast size of
practical architectures, it is often difficult to form a higher-level understanding of the
mechanism by which the system produces particular outputs. For this reason, neural
networks are often described as opaque or black box systems, as opposed to transparent
or intrinsically interpretable systems (see, e.g., Lipton, 2018; Rudin, 2019; Molnar, 2022).

The lack of transparency of neural network systems becomes problematic in certain
settings. For example, opaque systems are not alone sufficient for applications in high-
stakes decision-making, where outputs must often be accompanied by an explanation
or justification (cf. Biran and Cotton, 2017; Miller, 2019b;a). Likewise, opaque systems
are not amenable to auditing by human experts, who can otherwise detect and correct
problematic learned behaviours (Caruana et al., 2015). Moreover, in some contexts,
obtaining a human-understandable model of data, for example as a source of scientific
hypotheses to be tested, is itself the aim of learning (Lipton, 2018).

There is an ongoing effort to develop techniques by which learned neural networks
can be interrogated by practitioners and their outputs explained to non-technical users
(see, e.g., Molnar, 2022, for a general overview).
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A deep understanding of deep learning

Not only are learned neural networks opaque as software systems, but the field also lacks
a deep understanding of the learning process producing these systems. For example, there
remain numerous empirical phenomena that resist explanation, including the observed
generalisation performance itself despite the scale of architectures used in practice (Zhang
et al., 2017; 2021); observed relationships between scale and performance (Hestness et al.,
2017; Belkin et al., 2019; see also Viering and Loog, 2021); and the phenomena of so-
called mode connectivity (Freeman and Bruna, 2017; Sagun et al., 2018; Draxler et al.,
2018; Garipov et al., 2018), Hessian singularity (Sagun et al., 2017; 2018; Chaudhari
et al., 2017; 2019; Papyan, 2018; Ghorbani et al., 2019), and lottery tickets (Frankle and
Carbin, 2019; Frankle et al., 2020).

A deeper understanding of the learning process could help to address the three chal-
lenges reviewed above:

1. Understanding the learning process is necessary to clarify the generalisation abilities
(and limits) of neural networks, because the learning process plays a crucial part in
determining learned neural network behaviour (Zhang et al., 2017).

2. Understanding the learning process could clarify the conditions under which learn-
ing will succeed, reducing the need for expensive trial and error in application and
research (cf. Strubell et al., 2019).

3. The learning process provides an alternative route to understanding learned neu-
ral networks, rather than a direct or “bottom-up” approach of building layers of
abstraction atop a vast connection graph (cf. recent proposals in neuroscience, Lil-
licrap and Körding, 2019; Richards et al., 2019).

One path to a deeper understanding is to seek rigorous mathematical theories describ-
ing the learning process.7 This approach has traditionally yielded powerful mathemati-
cal guarantees for learning techniques—consider, for example, the generalisation bounds
yielded by Vapnik–Chervonenkis theory (Vapnik, 2000). Unfortunately, traditional sta-
tistical learning theory fails to account for observed deep learning performance, due in
part to the scale and complexity of neural networks (Zhang et al., 2017).8

Accordingly, there is a need for basic theoretical research—particularly that which
speaks to the nature of complexity in neural networks—clarifying all aspects of deep
learning. This is the broad motivation towards which this thesis is directed.

7Of course, empirical study of the learning process is a complementary path to a deeper understanding,
as has indeed yielded much of the field’s current understanding (albeit at great computational expense).

8As another example, classical statistical theory (à la Cramér, 1946; Akaike, 1973; 1974; see, e.g.,
Newey and McFadden, 1994) fails to apply to neural network learning due to the presence of so-called
information singularities (cf., e.g., Hagiwara et al., 1993; Watanabe, 2007; 2009; 2018; Wei et al., 2022).
Such singularities are closely linked with degenerate neural networks (Fukumizu, 1996).
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2.2 Neural network structure, function, and learning

Neural networks can be understood at several interrelated levels (cf. Figure 2.1).

1. The macro-structural level: a neural network is a graph data structure, comprising
a network of computational units of different kinds, connected by directed edges.

2. Themicro-structural level: a neural network is an instantiation of a macro-structural
template, with particular edge weights and individual unit properties.

3. The implementation level: a neural network is an information-processing system,
implementing a mathematical function by propagating signals through its structure.

4. The adaptive level: a neural network is a learning system, adaptively modifying its
micro-structure to bring its function into alignment with input–output examples.

The term “neural network” may invoke any or all of these levels. As the distinctions are
central to neural network geometry, I introduce the following terminology.

1. Neural network architecture: a macro-structural template—a unit connection graph.

2. Neural network parameter: a vector of weights and unit properties indexing a par-
ticular micro-structure.

3. Neural network function: the input–output map implemented by some structure.

4. Neural network learning algorithm: an algorithm that takes as input a data set and
architecture, and then searches for a matching parameter and function.

In this section, I introduce each of the above elements of neural networks in detail.

(a)

(b)
input

output

(c)

input

output{·} data set

(d)

Figure 2.1: Levels of understanding neural networks. (a) Macro-structural/architecture
(a connection graph). (b)Micro-structural/parameter (a particular choice of edge weights
and unit properties, indicated here as line widths, with colour indicating sign). (c) Im-
plementation/function (input–output map based on structure). (d) Adaptive/learning
algorithm (process of adapting the parameter to align the function with some data set).
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Macro-structure: Neural network architectures

A neural network architecture specifies the network’s abstract form including the number
and bulk properties of the computational units and the edges connecting them.

To clarify this abstract definition, consider a fundamental example—the fully-connected
feed-forward architecture (also called the multi-layer perceptron architecture). Units are
arranged in three or more layers, with the units of one layer connected to all those in the
next (cf. Figure 2.2). The source units in the first layer (the input layer) are called input
units. The sink units in the final layer (the output layer) are called output units. The
remaining layers and units are called hidden layers and hidden units.

input
layer

hidden
layer 1

hidden
layer 2

hidden
layer 3

hidden
layer 4

hidden
layer 5

hidden
layer 6

output
layer

Figure 2.2: Connection graph for an example fully-connected feed-forward neural net-
work architecture. The graph has 8 layers, 26 units, and 80 edges. Left: input layer
of three input units. Middle: six hidden layers each with three or four hidden units.
Right: output layer of two output units.

As for the bulk computational properties of each unit, a fully-connected feed-forward
architecture specifies an activation function (also called a transfer function) governing the
unit’s response to incoming signals, and whether the unit has a bias (also called threshold)
property. The most appropriate choices depend on the application (Goodfellow et al.,
2016). Several activation functions relevant to related work are as follows (cf. Figure 2.3).

1. Identity (id(z) = z). Often used for input and output units. If also used for
hidden units, the result is a linear neural network—a simple kind of neural network
sometimes analysed as a first step in theoretical work (Baldi and Hornik, 1995).

2. Hyperbolic tangent (tanh(z) = (ez − e−z)/(ez + e−z)). Inspired by saturation in
biological neurons. Historically popular for hidden units in practice (Goodfellow
et al., 2016), and therefore also in early theoretical analyses (e.g., Sussmann, 1992).
A variant is the related logistic sigmoid (σ(z) = (1 + e−z)−1 = 1

2
tanh

(
1
2
z
)

+ 1).

3. Rectified linear unit (relu(z) = max {0, z}). Inspired by thresholding in biological
neurons (Nair and Hinton, 2010; Glorot et al., 2011). Currently popular for hidden
units in practice (Goodfellow et al., 2016).

13



−2 2

−1

1

z

id(z)

−2 2

−1

1

z

tanh(z)

−2 2

−1
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Figure 2.3: Example activation functions. Left: identity (id). Middle: hyperbolic
tangent (tanh). Right: rectified linear unit (relu).

In practice, many applications call for more sophisticated architectures, better suited
to learning from certain data than is the fully-connected feed-forward architecture. Promi-
nent architectures include convolutional neural networks (LeCun et al., 1989b;a; also re-
viewed in Rawat and Wang, 2017), recurrent neural networks (Hochreiter and Schmidhu-
ber, 1997b; also reviewed in De Mulder et al., 2015; Lipton et al., 2015), and transformers
(Vaswani et al., 2017; see also Phuong and Hutter, 2022; Yu et al., 2022).

Nevertheless, fully-connected feed-forward architectures are fundamental—all of the
above-listed architectures use this simpler architecture as a “building block,” in the sense
that their connection graphs contain fully-connected feed-forward subgraphs. Accord-
ingly, theoretical work often begins in the fully-connected feed-forward setting.

Micro-structure: Neural network parameters

Once a neural network architecture fixes the units and connections, it remains to set the
many edge weights and tune any internal unit properties (such as biases) in one of many
possible ways, each constituting a micro-structure. A neural network parameter is a vector
that encodes a particular micro-structure, with the vector’s components determining the
edge weights and unit properties (cf. Figure 2.4). The space of vectors corresponding to all
possible neural network micro-structures for a given architecture is called the parameter
space.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) ∈ R13

4

6

8

5

7

9

1

2

3

10

11

12

13

Figure 2.4: Example of a neural network parameter (left) and micro-structure (right).
The neural network architecture has 9 edges connecting 6 units (including 4 with biases).

14



Implementation: Neural network functions

The implementation perspective on neural networks imbues a neural network’s structure
with semantics—the units and edges constitute an information-processing system map-
ping input signals to output signals (in a manner depending on the unit properties). The
corresponding mathematical function is a neural network function.

In the case of a fully-connected feed-forward architecture, a given micro-structure
processes input signals as follows (cf. Figure 2.5).9

1. The components of an input vector are given to the input units, which send these
values along their outgoing edges.

2. Each edge multiplies its value by its edge weight, giving this value to its target unit.

3. Each hidden unit sums the values received along its incoming edges, adds its bias
value, feeds the total through its activation function, and sends the result along its
own outgoing edges.

4. Steps (2) and (3) repeat for each layer (until signals reach the output layer).

5. Each output unit sums the values received along its incoming edges, and adds its
bias value. The resulting values constitute the function output.

x1

x2

y

v = tanh(u1 + u2 + b)
u1

u2

v

b
x1

x2

y

Figure 2.5: Implementation of a mathematical function by a neural network. Top left:
Input units encode a numerical representation of the function input vector. This value
travels along their edges, multiplied by edge weights. Bottom left: The values arriving
at each hidden unit are added together (with the unit’s bias). The unit then emits its
own signal according to its activation function (shown, hyperbolic tangent, tanh). Top
middle: The process repeats, until eventually the output units emit the function output.
Right: The result is a mathematical function mapping input signals to output signals.

9This description of neural network implementation is mainly expository. In practice, for increased
efficiency, the computation is implemented using highly parallelised matrix operations on graphics pro-
cessing units or other specialised hardware.
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Adaptation: Neural network learning algorithms

The final level of understanding neural networks brings together the macro-structural,
micro-structural, and implementation levels, and also connects neural networks back to
the motivating context of machine learning and deep learning (Section 2.1), as follows.
Given a data set and a neural network architecture, a neural network learning algorithm
is a procedure for finding a neural network parameter such that the implemented neural
network function closely matches the input–output examples in the data set.

The concept of “matching” is formalised using a loss function (also called a cost func-
tion or risk function). A well-known example loss function is the mean squared error—as
used in linear regression (Legendre, 1805; Gauss, 1809; 1821)—which measures the av-
erage squared distance between the example outputs and the neural network function’s
outputs for the inputs in the data set. The appropriate loss function depends on the
application (Goodfellow et al., 2016).

The prevailing approach to this difficult search problem draws on the numerical op-
timisation literature—on local iterative search methods in particular. These methods
explore the loss landscape by incremental perturbation of the parameter in a direction
chosen so as to reduce the loss, searching for a (local) minimum (cf. Figure 2.6). The
scale of modern architectures and data sets typically necessitate first-order methods, and,
even then, advanced algorithmic techniques and specialised hardware are required for ef-
ficiently estimating gradients. Beyond the scope of this review is a wealth of literature on
practical learning algorithms (see, e.g., Goodfellow et al., 2016, §8; Bottou et al., 2018).

Suffice it to note that the behaviour of any local search method is determined by the
nature of the loss landscape. The nature of the loss landscape is, in turn, determined by
the link between neural network structures and neural network functions—the subject
of neural network geometry. Understanding neural network geometry is therefore key to
understanding neural network learning. To this topic, I now turn.

input

output
{·} data set

high-loss fn.

low-loss fn.

parameter space

lo
ss

high-loss pmr.

low-loss pmr.

gradient step

Figure 2.6: Left: A loss function scores how well each neural network function matches
a data set. Right: Such scores define a loss landscape over parameter space, in which
gradient-based methods can iteratively search for a low-loss parameter.
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2.3 Non-degenerate neural network geometry

Neural network geometry is the study of the relationship between neural network struc-
ture and function. Neural network geometry addresses topics such as the existence and
uniqueness of neural network parameters implementing certain mathematical functions.

It turns out that neural networks have the capacity to (approximately) implement
many mathematical functions. In fact, given a neural network architecture with a single
hidden layer, a suitable activation function, and a large enough number of hidden units,
any continuous function on a bounded domain can be approximated to any desired degree
of accuracy (see, e.g., Cybenko, 1989; Hecht-Nielsen, 1989; Hornik et al., 1989; Leshno
et al., 1993; see also work on the approximation achievable with a given number of hid-
den units, e.g., Barron, 1993; Murata, 1996; Mhaskar, 1996). This celebrated universal
approximation result distinguishes single-hidden-layer neural networks from precursor
architectures (without hidden layers; Minsky and Papert, 1988), positioning them along-
side function classes of traditional interest in analysis, such as trigonometric and algebraic
polynomials (Fourier, 1822; Weierstrass, 1885; cf. Rudin, 1976, §7,§8; Pinkus, 2000, §3).

It further turns out that the parameters implementing neural network functions are far
from unique—in general, there are many parameters implementing each neural network
function. As simple examples, refer back to Figures 1.1 and 1.2. Call two neural network
parameters functionally equivalent if they implement the same neural network function.
In lieu of uniqueness, the question becomes: what are all of the functionally equivalent
structures—can one enumerate them or detect them? As I review in this section, these
questions have been addressed from several related perspectives, namely:

1. Structural identifiability: (partially) recovering the implementing structure from a
neural network function (e.g., Sussmann, 1992; Albertini et al., 1993; Kůrková and
Kainen, 1994; Fefferman, 1994; Phuong and Lampert, 2020; Bona-Pellissier et al.,
2021; Vlačić and Bölcskei, 2021; Stock and Gribonval, 2022).

2. Structure–function symmetries: generating functionally equivalent parameters by
simple parameter transformations (e.g., Hecht-Nielsen, 1990; Chen et al., 1993;
Rüger and Ossen, 1997; DiMattina and Zhang, 2010).

3. Unique representatives: finding subsets of the parameter space in which uniqueness
holds (e.g., Hecht-Nielsen, 1990; Chen et al., 1993; Kůrková and Kainen, 1994; Rüger
and Ossen, 1997).

The main aim of this review is to show that—regardless of perspective—prior work has
restricted its attention to certain non-degenerate neural network structures, leaving the
geometry of the remaining degenerate neural networks to be clarified.
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Identifiability: (Partially) recovering structure from function

Given a neural network function and a family of architectures (leaving, say, the number
of hidden units to be determined), can one uniquely recover the implementing neural
network parameter? No: there are usually many possible implementations. However, if
one can characterise all of these implementations—the so-called functional equivalence
class of the parameter—then one can claim to have recovered as much information about
the parameter as possible. This is the most common framing by which the functional
equivalence question has been addressed.10,11

Perhaps the original contribution within this framing comes from Sussmann (1992).
Sussmann studied the setting of single-hidden-layer neural networks with the hyper-
bolic tangent activation function, showing that for parameters that satisfy certain non-
degeneracy conditions, all functionally equivalent parameters are related by the simple
unit exchange and negation operations exemplified in Figure 1.1. Similar results were
soon achieved for architectures with certain analytic (Albertini et al., 1993) or asymp-
totically constant (Kůrková and Kainen, 1994; Kainen et al., 1994) activation functions
(see also Fukumizu, 1996). Fefferman and Markel (1993, also Fefferman, 1994) achieved
a similar result for multi-layer hyperbolic tangent architectures, as did Albertini and
Sontag (1992; 1993a;b;c, also Albertini et al., 1993) for certain recurrent architectures.

More recently, there has been a resurgence of work on this topic. In line with modern
architectural fashion, Phuong and Lampert (2020), Bona-Pellissier et al. (2021), and Stock
and Gribonval (2022) have studied multi-layer networks with the rectified linear unit
activation function, showing that (again, under various non-degeneracy assumptions),
functionally equivalent parameters are related by unit exchanges and a positive scaling
operation (see also Carroll, 2021, §4). Vlačić and Bölcskei (2021; 2022) have given a more
general result in terms of the basic affine symmetries of certain activation functions for a
very general class of connection graphs.

All of these results leave the somewhat optimistic impression that, though neural net-
work implementations are not unique, at least they are “almost” unique, in that all but
the order of and, say, the sign or scaling of units can be recovered. However, these results
rely on the deliberate exclusion of degenerate parameters, acknowledged as counterex-
amples for which “almost”-uniqueness fails. While there has been some effort to obtain
minimal non-degeneracy assumptions (e.g., Sussmann, 1992; Vlačić and Bölcskei, 2021),
the richer functional equivalence classes of degenerate parameters remain to be clarified.

10Briefly shifting to a statistical perspective on deep learning (e.g., White, 1989; Tishby et al., 1989;
Levin et al., 1990), parameter recovery is essentially statistical identifiability (Koopmans, 1949; Koopmans
and Reiersol, 1950; see also Ran and Hu, 2017; Lewbel, 2019), with the lack of uniqueness corresponding
to partial identifiability (also called set identifiability; Manski, 2003; Lewbel, 2019, §6.2). This statistical
perspective does not appear to have been widely adopted, though see DiMattina and Zhang (2010).

11I review work on the topic of recoverability, which is separate from but related to work devising
algorithms for recovering parameters from input–output functions (see, e.g., Rolnick and Körding, 2020).
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Symmetries: Transformations generating equivalent parameters

An alternative perspective on neural network geometry sees it as the study of the mathe-
matical properties of the structure–function map—the function mapping neural network
parameters to the neural network functions they implement.12 From this perspective,
approximation theory studies the map’s range, and the functional equivalence question
is the study of its symmetries.

A structure–function symmetry is a parameter transformation that leaves the imple-
mented function unchanged (these symmetries are also called equi-output transforma-
tions). This perspective allows one to easily generate functionally equivalent parameters
(by applying transformations), and moreover to view the transformations as a mathemati-
cal group (with composition as the group operation). Structure–function symmetries also
have direct implications for the shape of the loss landscape used in learning.

The question of structure–function symmetries was perhaps first formulated by Hecht-
Nielsen (1990), who documented the linear symmetries corresponding to unit exchanges in
multi-layered architectures. Hecht-Nielsen (1990) noted that further symmetries exist, for
example, based on unit negation for odd activation functions (cf. Figure 1.1). Chen et al.
(1993, also Chen and Hecht-Nielsen, 1991) went on to show that, assuming a hyperbolic
tangent activation function, there are no other analytic symmetries than those expressible
as combinations of unit exchanges and negations. Rüger and Ossen (1997) extended this
result to architectures using certain sigmoidal activation functions.

Structure–function symmetries for architectures with more general activation func-
tions, including the rectified linear unit, have not been studied directly. Recent work
from the identifiability perspective (e.g., Phuong and Lampert, 2020; Stock and Gribon-
val, 2022, reviewed above) immediately suggests that in the case of the rectified linear
unit, unit scaling operations generate linear symmetries for these architectures. With one
such operation for each positive constant this gives a continuum of symmetries, allowing
smooth variation of a parameter while maintaining functional equivalence.13 Such local
symmetries have also been studied for certain biologically-motivated activation functions
by DiMattina and Zhang (2010).

The analyticity condition (or the stronger linearity condition) on the transformations
in the above results is crucial. Chen et al. (1993) and Rüger and Ossen (1997) acknowl-
edge that their results do not rule out discontinuous symmetries. Such discontinuous
symmetries can be created by acting on subsets of degenerate parameters (cf. above)
in ways that exploit their richer functional equivalence classes, while transforming non-
degenerate parameters according to one of the basic transformations outlined above.
Chen et al. (1993) left the study of these discontinuous symmetries as future work.

12Note carefully that the output of the structure–function map is itself a function.
13This basic property of rectified linear unit architectures has been widely noted outside of direct work

on neural network geometry (see, e.g., Dinh et al., 2017).
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Unique representatives: Canonical regions and canonicalisation

A third perspective on functional equivalence is the search for certain representative
implementations for each function, as an attempt to achieve some of the benefits of
unique implementations despite the reality of extensive non-uniqueness. This work has
pursued two aims: (1) to identify subsets of parameter space within which neural network
functions have unique implementations—I term these regions canonical regions, and (2) to
find equivalent implementations of particular parameters within those regions—a process
I term canonicalisation.

There have been various results constructing partial canonical regions. Studying
multi-layer hyperbolic tangent networks, Hecht-Nielsen (1990) constructed cone-shaped
subsets of the parameter space containing at least one parameter implementing each func-
tion. Chen et al. (1993, also Chen and Hecht-Nielsen, 1991) improved this result, finding
cone- and wedge-shaped regions containing exactly one implementation of each function,
except possibly for parameters on the boundaries of the region. Kůrková and Kainen
(1994) extended this result for single-hidden-layer architectures with certain asymptoti-
cally constant activation functions, and Rüger and Ossen (1997) for multi-layer architec-
tures with certain sigmoidal activation functions.

Rüger and Ossen (1997) also gave a partial algorithm for canonicalisation. The al-
gorithm is designed for parameters with non-zero biases, but is also extensible to any
non-degenerate parameters, as it works to counteract the basic symmetries of unit ex-
change and negation that are the typical source of non-uniqueness in the architecture.

A common pattern in the above partial canonical regions, and the partial canonicali-
sation algorithm, is that they successfully create and compute unique representations of
non-degenerate parameters, but they fail to account for degenerate parameters. Degen-
erate parameters occupy (non-uniquely) the boundaries of the partial canonical regions,
and the algorithm of Rüger and Ossen (1997) will fail to produce a unique output for
functionally equivalent degenerate parameters in general. The unique representation of
degenerate neural networks remains to be studied.

Towards degenerate neural network geometry

The above works, and, in particular, their collective technical assumptions and limita-
tions, carve out a gap in the parameter space where the extent of functional equivalence,
the structure–function symmetries, and the demands of canonicalisation have more com-
plex and richer answers that remain unexplored. A full understanding of neural network
geometry requires a dedicated analysis of the degenerate case. Fortunately—as I discuss
in the next section—there is much in existing work that can be reframed towards this end,
providing a solid foundation for my investigation of degenerate neural network geometry.
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2.4 Degenerate neural networks

In this section I synthesise three characterisations of degenerate neural networks:

1. Richer geometry: a neural network parameter is degenerate if it has a more complex
functional equivalence class than that generated by the simple operations that are
typically studied (for example, unit exchange and negation, cf. Section 2.3).

2. Non-minimality, or, global redundancy: a neural network parameter is degenerate if
there exists some structure with fewer hidden units implementing the same function.

3. Reducibility, or, local redundancy: a neural network parameter is degenerate if there
are obvious means of removing units while preserving the implemented function.

These characterisations are equivalent—that is, under certain assumptions on the archi-
tecture, they describe the exact same neural network parameters. This is a central insight
and the foundation for the investigation of degeneracy presented in this thesis. The first
perspective places degeneracy as the determinant of the answers to geometric questions
about neural network structure and function (cf. Section 2.3 and Chapter 5). The second
perspective places degeneracy in a position to clarify the role of neural network complexity
in deep learning (cf. end of Section 2.1). The third perspective reveals an effective means
to analyse and measure degeneracy, which is the basis for my framework (cf. Chapter 4).

Reframing Sussmann’s characterisations of non-degeneracy

The clearest formal characterisation of degeneracy comes, indirectly, from Sussmann
(1992). In the setting of single-hidden-layer neural networks with the hyperbolic tan-
gent activation function, Sussmann studied the functional equivalence question from the
perspective of structural identifiability (cf. Section 2.3), showing that the following three
conditions on a neural network parameter are formally equivalent.

1. Simple geometry: the functional equivalence class is exhaustively described by the
operations of unit exchange and negation (cf. Figure 1.1).

2. Minimality: the parameter implements a neural network function that cannot be
implemented with fewer hidden units.

3. Irreducibility: the parameter does not display any of a short list of patterns indi-
cating that a unit could be removed by a simple operation (cf. Table 2.7, below).

Sussmann (1992) framed these results around the non-degenerate case. However, negating
each condition reveals the equivalence of the characterisations of degenerate neural net-
works in terms of (1) richer geometry, (2) non-minimality, and (3) reducibility (cf. above).
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Sussmann’s conditions of reducibility

The “patterns”—or conditions of reducibility—in the third of Sussmann’s equivalent char-
acterisations of non-degeneracy (Sussmann, 1992) can be distilled as follows.

(i) The outgoing weights for some hidden unit are all zero (such units contribute zero
to the implemented function).

(ii) The incoming weights for some hidden unit are all zero (the contribution of such
units to the output is a constant independent of the input).

(iii) The incoming weights and biases for some pair of hidden units are equal (the con-
tributions of such pairs of units are proportional).

(iv) The incoming weights and biases for some pair of hidden units are negated (these
contributions are also proportional, since the hyperbolic tangent is an odd function).

These conditions are exemplified in Table 2.7.

Condition Example reducible network Richer geometry Non-minimality

(i)
1 3 5

2

4

0 7

1 3 5

x

y

0 7

1

3

5

7

(ii)
1 3 5

0

4

6 7

1 3 5

0

x

y

7
+6 tanh(4)
−y tanh(x)

1

3

5

7+6 tanh(4)

(iii)
1 3 5

1

3

6 7

1 3 5+x

1

3

6−x 7

1

3

5+6

7

(iv)
1 3 5

-1

-3

6 7

1 3 5−x

-1

-3

6−x 7

1

3

5−6

7

Table 2.7: Left column: Example neural network structures meeting each condition of
reducibility (highlighted: offending units, weights, and biases). Middle column: The
conditions allow some of the remaining weights and biases to be varied (x, y ∈ R) without
changing the function. Right column: Moreover, with an appropriate variation, units can
effectively be removed, implying a smaller, functionally equivalent structure.

22



Table 2.7 illustrates how each reducibility condition implies a richer functional equiv-
alence class—accessible by continuously modifying the affected weights and biases in
certain ways. These modifications lead to parameters that are not related to the original
parameter by unit exchanges and negations. For this reason, these parameters have been
excluded from previous work studying the functional equivalence question.

Table 2.7 also illustrates how, with a simple operation (involving varying the free
parameters so as to bring a unit’s contribution to the implemented function to zero),
each reducibility condition implies the existence of a smaller equivalent structure. This
can be interpreted as a kind of “local redundancy”, in the sense that it is possible to
eliminate some unit from the network with a simple operation.

Conversely, consider the case where it is possible to implement the same function
with some smaller structure. This situation could be described as a kind of “global
redundancy”, since, a priori, there is no reason to think that the smaller structure has
much in common with the initial structure. However, Sussmann’s equivalence result
implies that any non-minimal structure is also reducible (Sussmann, 1992). In other
words, there is no global redundancy without local redundancy. This property of single-
hidden-layer hyperbolic tangent networks makes it possible to create algorithms that
“minimise” neural network structures, eliminating global redundancy simply by repeatedly
removing instances of local redundancy (cf. Section 4.2).

Beyond single-hidden-layer hyperbolic tangent networks

In the broader neural network geometry literature, there has been some work finding
similar equivalence results in other architectures. Like Sussmann (1992), these authors
emphasise the implications for the non-degenerate case. However, with a similar refram-
ing, it is possible to learn about the degenerate case from this work.

Albertini et al. (1993) observed that the proofs of Sussmann’s equivalence results
rely crucially on a property of the hyperbolic tangent activation function they called the
independence property, which concerns the existence of non-trivial linear combinations of
affine transformations of the activation function. They gave some sufficient conditions
under which certain analytic activation functions satisfy this property. Kůrková and
Kainen (1994) generalised Sussmann’s results in a different direction, studying a certain
class of asymptotically constant odd or even activation functions.

More recently, Vlačić and Bölcskei (2021; 2022) investigated structural redundancy in
a much broader class of architectures based on arbitrary connection graphs. The results
of Vlačić and Bölcskei (2021) essentially imply that a similar set of equivalences will hold
for a given family of neural network structures if the only irreducible implementation of
the zero function is an empty neural network.
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2.5 The relevance of degenerate neural networks

The conditions characterising degenerate neural network parameters describe a vanishing
proportion of the parameter space.14 If the components of a neural network parame-
ter are chosen at random (for example, independently sampled from a standard normal
distribution), then there is effectively zero probability that the resulting parameter is
degenerate. In this sense, degenerate neural networks are highly atypical.

However, the neural networks that are relevant to deep learning are not (only) those
that are typical according to chance, but rather:

1. those neural networks that typically arise as the outcome of the learning process
using real data, that is, learned neural networks; and, in turn,

2. those neural networks that are typically encountered during the search process that
constitutes learning, since these influence the selection of the former.

Moreover, non-degenerate neural networks that are, nevertheless, approximately de-
generate can share some of the properties of degenerate neural networks. For example,
such parameters inherit from their degenerate neighbours a larger set of approximately
functionally equivalent parameters. Since neural network learning algorithms operate by
local search it follows that degenerate neural networks can influence the course of learning
even if they are merely approached (rather than encountered exactly).

In this section, I briefly review empirical and theoretical evidence for the role of (ap-
proximately) degenerate neural networks in these contexts, despite their a priori atypi-
cality.15 Further work is needed to establish the prevalence of (approximate) degeneracy
among typical learned neural network structures and in the course of learning. An impor-
tant precursor to this work is to develop methods for measuring (approximate) degeneracy,
such as the measures I study in this thesis.

14Compared to a non-degenerate neural network parameter, any individual degenerate neural network
parameter has a larger functional equivalence class (characteristically—cf. Section 2.4). However, there
are vastly more distinct non-degenerate parameters than degenerate neural network parameters.

15Before turning to examples within the context of deep learning, I note mathematics and machine
learning are replete with well-studied examples of atypical but important structures—look no further
than the coordinate axes (cf. regularised regression techniques such as the lasso, Tibshirani, 1996), or
consider the set of all singular matrices (cf. low-rank matrix approximation techniques such as truncated
singular value decomposition, see, e.g., Trefethen and Bau, 1997, §5; Murphy, 2012, §12.2.3). In the latter
case, consider moreover that ill-conditioned (approximately singular) matrices behave, for the purposes
of numerical linear algebra, somewhat like their troublesome neighbours (see, e.g., Trefethen and Bau,
1997, §12). Finally, the course of a non-linear dynamical system is fundamentally determined by the
characteristics of stationary points, which govern the dynamics of nearby trajectories even if the points
themselves are never reached (cf., e.g., discussion of phase portraits in Strogatz, 1994, §§6.1–6.3). This
last example has an immediate resemblance to gradient-based learning—see also discussion below.
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Degeneracy among learned neural networks

Learned neural networks are chosen not at random, but for their ability to represent the
input–output behaviour exemplified in a data set. Degenerate neural network parameters
are candidate solutions to the learning problem, to be evaluated by computing their loss,
not by chance. Put another way, by the strict characterisation of non-degenerate neural
networks as minimal implementations of their functions (cf. Section 2.4), the one neural
network function goes from non-degenerate to degenerate by the addition of a single unit
to the architecture used in learning, even if the data are unchanged.

There is some empirical evidence that, in practice, learned neural networks are often
(approximately) non-minimal implementations of their neural network functions. It is
often possible to compress, or distil, a learned neural network into an architecture with
significantly fewer units, without a large change in performance (see, e.g., Buciluǎ et al.,
2006; Hinton et al., 2014; and in particular Sanh et al., 2019 for a large-scale example).

Similarly, work on pruning studies the effects of removing weights or units from the
connection graph (e.g., Casper et al., 2021). In particular, the recent investigation of
learned neural network structures by Casper et al. (2021) found many instances of units
with weak or correlated outputs. Casper et al. (2021) found that such units could be
eliminated without having a large effect on performance by simple operations bearing a
striking resemblance to the reducibility operations discussed in Section 2.4.

Degeneracy and the learning process

Recall (cf. Section 2.2) that neural network learning algorithms typically operate by
local search in the loss landscape as directed by gradient information. Of fundamental
importance to such search processes is therefore the occurrence of critical points, such as
local minima or saddle points. Apart from acting as fixed points in the learning process,
the properties of these points govern the structure of the nearby loss landscape.

Fukumizu and Amari (2000), Fukumizu et al. (2019), and Şimşek et al. (2021) have
constructed critical points by various methods of embedding the parameter space of one
neural network architecture into that of another architecture with additional units (where
the embedding is designed to preserve functional equivalence). Since the resulting critical
points satisfy the non-minimality characterisation of degeneracy, they are degenerate
neural network parameters.

Similarly, Amari et al. (2006, also Wei et al., 2008; Cousseau et al., 2008) have shown
that gradient-based learning dynamics are distorted in the neighbourhood of degenerate
networks, exhibiting so-called Milnor attractor dynamics, leading to slow learning. This
particular issue disappears in deeper networks (Amari et al., 2017), but the earlier analysis
establishes the broader principle that the dynamics of learning can be influenced by the
local presence of degenerate neural networks.
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Chapter 3

Formal Preliminaries

Before embarking upon my analysis I use this opportunity to establish some fundamental
technical definitions and results of use throughout this thesis.

1. In Section 3.1, I document my conventions for denoting vectors and their compo-
nents. I recall the uniform (L∞) metric used for measuring the size of and distance
between vectors. I recall the lexicographic total order on vectors, and use it to
extend the notions of sorting, sign, and absolute value from scalars to vectors.

2. In Section 3.2, I formally introduce the family of simple neural networks and asso-
ciated notational conventions. These neural networks are the setting for the formal
analysis presented in this thesis.

3. In Section 3.3, I review the technical results of Sussmann (1992) equivalently charac-
terising degenerate simple neural networks in terms of reducibility,1 non-minimality,
and richer geometry. I give a slight generalisation of Sussmann’s results, extending
the conditions to the setting of neural networks with multiple outputs.

The conditions of reducibility in Definition 3.22 serve as the operational definition
of degeneracy used throughout this thesis. Later in this section, I characterise,
visualise, and study the properties of the subset of parameter space containing
reducible neural network parameters.

4. In Section 3.4, I review the requisite computational complexity theory to support
the statement and proof of the hardness results in Chapter 6, including NP-
completeness and problem reductions,1 and I prove the hardness of a restricted
variant of the Boolean satisfiability problem.

Many additional mathematical definitions and notational conventions are introduced
throughout the remaining chapters of this thesis—see Appendix B for a comprehensive
list of all definitions, which may serve as a useful reference.

1Note carefully the double use of the term “reducibility” exemplified by Sections 3.3 and 3.4. Context
should suffice to disambiguate the intended meaning throughout the remaining chapters.
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3.1 Packing, measuring, sorting, and signing vectors

Vectors are used throughout this thesis to represent neural network inputs, parameters,
and outputs. In particular the vector space of neural network parameters plays a key
role in my analysis. In this section, I document notational conventions and foundational
concepts relating to vectors.

1. I introduce my notational conventions for referring to vectors and their parameters.

2. I recall the normed vector space structure of Rp given by the uniform norm and
the associated metric space structure given by the uniform metric.

3. I recall the total order structure of Rp given by the lexicographic order.

4. I use the lexicographic order to extend the notions of sign and absolute value from
scalars to vectors.

I assume that the concepts denoted are familiar to my readers, or refer them to an
introductory text on linear algebra (e.g., Halmos, 1958, §§1–3; Axler, 2015) analysis (e.g.,
Kreyszig, 1978, §1; Ó Searcóid, 2006; Lindstrøm, 2017, §3), or order theory (e.g., Halmos,
1960, §14; Harzheim, 2005).

Vectors and their components

Throughout this thesis I make extensive use of the following conventions for flexibly
referring to vectors and their components.

1. Unpacking components: given a vector denoted with some letter, for example v ∈
Rp, I denote the p ordered components of v as v1, . . . , vp. If the vector already bears
a subscript, for example vi ∈ Rp, I denote the components as vi,1, . . . , vi,p.

2. Packing subvectors: given two vectors u ∈ Rp and u ∈ Rq, I denote by (u, v) the
(p + q)-dimensional vector (u1, . . . , up, v1, . . . , vq) ∈ Rp+q. I extend this convention
to arbitrary lists of vectors and singleton components.

3. Vector functions: given a function f on the domain Rp, I drop the second layer
of parentheses in application to a vector specified by its components, for example
writing f(v1, . . . , vp) rather than f((v1, . . . , vp)).

Moreover, given two vectors u, v ∈ Rp, I usually denote the dot product implicitly as in

uv = u · v =

p∑

i=1

uivi.
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The uniform metric

An important notion of the size of a p-dimensional vector is the uniform norm (also called
the infinity norm, max norm, or the Chebyshev norm of a vector). The uniform norm
gives rise to the uniform metric (also L∞ or Chebyshev metric), a distance metric on Rp.

Definition 3.1 (Uniform norm). Consider a vector v ∈ Rp. The uniform norm of v,
denoted ‖v‖∞, is defined as the largest absolute component of v:

‖v‖∞ = max
i=1,...,p

|vi|.

Definition 3.2 (Uniform distance). Consider a pair of vectors u, v ∈ Rp. The uniform
distance between u and v, denoted ‖u− v‖∞, is defined as the largest component-wise
absolute difference between u and v:

‖u− v‖∞ = max
i=1,...,p

|ui − vi|.

I use the following definition and notation for closed uniform neighbourhoods (also
called L∞ balls) of a vector.

Definition 3.3 (Closed uniform neighbourhood). Consider a vector v ∈ Rp. Given a
positive scalar ε ∈ R+, the closed uniform neighbourhood of v with radius ε, denoted
B̄∞(v; ε), is the set of vectors with uniform distance at most ε from v:

B̄∞(v; ε) = {u ∈ Rp | ‖u− v‖∞ ≤ ε }.

The lexicographic order of vectors

I introduce a total order (also called a linear order) on Rp. I use this order throughout my
analysis to sort vectors, as a means to canonicalise a list of vectors or to detect duplicate
vectors in a computationally efficient manner.

Definition 3.4 (Lexicographic order of vectors). Given p ∈ N, the lexicographic order is
a relation on Rp denoted �, defined such that for u, v ∈ Rp,

u � v ⇔ (u = v) ∨
p∨

i=1

(
(u1 = v1) ∧ · · · ∧ (ui−1 = vi−1) ∧ (ui < vi)

)
.

Moreover, define the strict lexicographic order relation u ≺ v ⇔ (u � v ∧ u 6= v), and the
usual reversed relations u � v ⇔ v ≺ u, and u � v ⇔ v � u.

Remark 3.5. The above definition essentially says that u � v when, if u and v differ in
at least one component, in the first component in which they differ, ui < vi.
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Remark 3.6. The lexicographic order is a total order on Rp (see, e.g., Harzheim, 2005,
Theorem 4.1.11). Therefore a list of vectors can be sorted into non-decreasing lexico-
graphic order using a comparison-based sorting algorithm. Standard sorting algorithms
such as Mergesort (Goldstine and von Neumann, 1948, pp. 49–68; Cormen et al., 2009,
§2), Heapsort (Williams, 1964; Cormen et al., 2009, §6), and Quicksort (Hoare, 1962;
Cormen et al., 2009, §7) use O(n log n) comparisons to sort a list of n items.2 Evaluating
the lexicographic order relation on Rp takes O(p) time (assuming that the components
use a standard, bounded-precision representation).

Lexicographic sign and absolute value

Aside from governing the sorting of vectors, the lexicographic order also allows the ex-
tension of the concepts of sign (as in, positive or negative) and absolute value from real
scalars to vectors in Rp, streamlining several algorithms and proofs in this thesis.

Definition 3.7 (Lexicographic sign). Consider a vector v ∈ Rp. Define the lexicographic
sign of v, denoted signlex(v), as

signlex(v) =





+1 (v � 0),

0 (v = 0),

−1 (v ≺ 0).

Say that v is lexicographically positive (or negative) if signlex(v) = +1 (or −1).

Remark 3.8. Lexicographically positive vectors are non-zero vectors whose first non-
zero component is positive. Similarly, lexicographically negative vectors are non-zero
vectors whose first non-zero component is negative. The zero vector 0 ∈ Rp is neither
lexicographically positive nor lexicographically negative (and is the only such vector).

Definition 3.9 (Lexicographic absolute value). Consider a vector v ∈ Rp. Define the
lexicographic absolute value of v, denoted abslex(v) ∈ Rp, as

abslex(v) = signlex(v) · v =





+v (v � 0),

0 (v = 0),

−v (v ≺ 0).

Remark 3.10. One can think of the uniform norm and the lexicographic absolute value
as alternative generalisations of the absolute value of a scalar. Note that, unlike the
uniform norm of a vector—a scalar—the lexicographic absolute value abslex(v) ∈ Rp.

2Quicksort uses O(n2) comparisons in the worst case, but can be made to require only O(n log n)
in expectation (Cormen et al., 2009, §7).
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3.2 Simple neural networks

In this thesis, I study a family of fully-connected, feed-forward neural network archi-
tectures with an arbitrary number of input and output units and a single hidden layer
of biased hidden units with the hyperbolic tangent activation function.3 I refer to such
neural networks as simple neural networks.

In this section, I clarify my notational conventions for simple neural networks. These
conventions are summarised in Table 3.1. Each row of the table is explained in more
detail throughout this section.

Concept Definition Notation Description

Architecture 3.11 An,mh n input units, m output units, and h
hidden units.

Parameter space 3.12 Wn,m
h Wn,m

h = R(n+m+1)h+m.

Parameter 3.13 w ∈ Wn,m
h w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d)

(see Figure 3.2).

Function 3.16 fw : Rn → Rm fw(x) = d+
h∑

i=1

ai tanh(bix+ ci).

Function family 3.18 Fn,m
h Fn,mh = { fw |w ∈ Wn,m

h }.

Extended family 3.20 Fn,m
∞ Fn,m∞ =

∞⋃

h=0

Fn,mh .

Table 3.1: Summary of simple neural network notation.

Simple neural network architecture

I formalise the family of simple neural network architectures (macro-structures) as follows.

Definition 3.11 (Simple neural network architecture). Consider an input dimension
n ∈ N+, an output dimension m ∈ N+, and a number of hidden units h ∈ N.4 The
simple neural network architecture An,mh is a fully-connected feed-forward neural network
architecture with n input units, m biased output units, and a single hidden layer of h
biased hidden units with the hyperbolic tangent activation function

tanh(z) =
ez − e−z
ez + e−z

.

3The hyperbolic tangent function is not the most commonly used activation function in modern
deep learning practice, but is chosen following Sussmann (1992), whose foundational results in neural
network geometry serve as the clearest available starting point for a thorough analysis of degeneracy
(cf. Sections 2.4 and 3.3). In Section 7.1 I discuss extensions of the analysis to additional settings.

4N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}. See Remark 3.14.
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Simple neural network parameters

Each simple neural network architecture gives rise to a space of possible neural network
parameters (micro-structures), called the parameter space. I formalise this concept below.

Definition 3.12 (Simple neural network parameter space). Consider the simple neural
network architecture An,mh . Note that the number of edges (requiring weights) is nh+mh

and the number of hidden/output units (requiring biases) is h + m, for a total of (n +

m+ 1)h+m components. Define the simple neural network parameter space

Wn,m
h = R(n+m+1)h+m.

Definition 3.13 (Simple neural network parameter). Consider the simple neural network
architecture An,mh with parameter space Wn,m

h . A simple neural network parameter w ∈
Wn,m

h has the form

w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d)

where for each hidden unit i = 1, . . . , h, ai ∈ Rm is the hidden unit’s outgoing weight
vector, bi ∈ Rn is the hidden unit’s incoming weight vector, and ci ∈ R is the hidden
unit’s bias; and d ∈ Rm contains for each output unit i = 1, . . . ,m, the output unit’s bias
di ∈ R.

Definition 3.13 exemplifies the typical way in which I unpack the components of the
((n + m + 1)h + m)-dimensional parameter vector into vectors of components (cf. Sec-
tion 3.1). There are other ways of ordering and grouping the components of a neural
network parameter, but this convention is the most appropriate for my analysis. I clarify
the meaning of each of the component vectors in Figure 3.2.

w =




a1, . . . , ai, . . . , ah,

b1, . . . , bi, . . . , bh,

c1, . . . , ci, . . . , ch,

d1, . . . , dm


 ∈ W

n,m
h

...

...

...

...

1

1

1

2

i

2

n

h

m

bi,1

bi,2

bi,n

ai,1

ai,2

ai,m
ci

d1

d2

dm

Figure 3.2: Illustration of the components of a simple neural network. I often refer to
particular groups of components from within a parameter vector w ∈ Wn,m

h . For each
hidden unit i = 1, . . . , n, there is an outgoing weight vector ai ∈ Rm, an incoming weight
vector bi ∈ Rn, and a bias ci ∈ R. There is also a vector of output unit biases d ∈ Rm.

32



Remark 3.14. The above definitions are designed to include the case h = 0. In this
case, the parameter space Wn,m

0 = Rm, with parameters simply consisting of output
biases (thus implementing constant functions fd(x) = d, cf. Definition 3.16). Similarly, I
defineWn,m

−1 = ∅, and likewise for the function families defined below. Though considering
neural networks without hidden units may seem unnatural, these boundary conventions
allow my analysis to smoothly extend to constant functions.

Remark 3.15. In practice, neural network parameters are implemented with bounded-
precision representations of components (for example, with single-precision floating-point
numbers). The distinction does not appear to matter for deep learning practice, since
similar performance is achievable with even less precision (e.g., Gupta et al., 2015). How-
ever, strictly speaking, the decision affects the computational complexity analysis of some
of the algorithms studied in this thesis.

Simple neural network functions

A simple neural network parameter implements a mathematical function, called the neural
network function.

Definition 3.16 (Simple neural network function). Consider a simple neural network ar-
chitectureAn,mh with parameter spaceWn,m

h . A parameter w ∈ Wn,m
h implements a simple

neural network function fw : Rn → Rm, where for w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d),

fw(x) = d+
h∑

i=1

ai tanh(bi · x+ ci).

Given a neural network function, one can formalise the geometric concept of functional
equivalence of neural network parameters.

Definition 3.17 (Functional equivalence). Consider the simple neural network architec-
ture An,mh with parameter space Wn,m

h . Two parameters w,w′ ∈ Wn,m
h are functionally

equivalent if and only if fw = fw′ (that is, ∀x ∈ Rn, fw(x) = fw′(x)).

Moreover, I define the family of functions implemented by all of the neural network
parameters in a given architecture’s parameter space. An elementary observation is that
there is substantial overlap between these function families for varying numbers of hidden
units h. In particular, they form a containment hierarchy.

Definition 3.18 (Simple neural network function family). Given a simple neural network
architecture An,mh , define the family of simple neural network functions on h units,

Fn,mh = { fw |w ∈ Wn,m
h }.
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Proposition 3.19. Let n,m ∈ N+. Then, with ( denoting proper inclusion,

Fn,m0 ( Fn,m1 ( · · · ( Fn,mh−1 ( Fn,mh ( Fn,mh+1 ( · · ·

Proof. (Fn,mh ⊂ Fn,mh+1): Let fw ∈ Fn,mh where w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈
Wn,m

h . One way to implement fw with a larger network is to augment the h-unit network
with an additional hidden unit with outgoing weight zero. Construct a parameter

w′ = (a1, . . . , ah, 0, b1, . . . , bh, 0, c1, . . . , ch, 0, d) ∈ Wn,m
h+1.

Then fw = fw′ ∈ Fn,mh+1.
(Fn,mh−1 6= Fn,mh ): For i = 1, . . . , h put ai = (1, 0, . . . , 0) ∈ Rm, bi = (i, 0, . . . , 0) ∈ Rn,

and ci = 0 ∈ R; and put d = 0 ∈ Rm. Then it is a corollary of Theorem 3.25 (Section 3.3)
that the parameter w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m

h implements a function
fw ∈ Fn,mh \ Fn,mh−1.

One can also speak collectively of the family of functions implementable within any
simple neural network architecture (with a given input and output dimension).

Definition 3.20 (Extended simple neural network function family). Given n,m ∈ N+,
define the extended family of simple neural network functions,

Fn,m∞ =
∞⋃

h=0

Fn,mh .

This leads to the conceptual picture of simple neural network function families il-
lustrated in Figure 3.3. Note that this visualisation accurately depicts the containment
structure, but is a possibly misleading picture of the properties of the function families.
For example, I show in Section 4.4 that Fn,mh is highly non-convex.

Fn,m
0 Fn,m

1 · · · Fn,m
h−1 Fn,m

h Fn,m
h+1 · · ·

Fn,m
∞

Figure 3.3: Conceptual illustration of the containment hierarchy of simple neural network
function families Fn,m0 ( Fn,m1 ( · · · , existing inside the extended family Fn,m∞ .
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The extended family of simple neural network functions has its own (abstract, infinite-
dimensional) vector space structure, since it is closed under the vector operations.

Proposition 3.21. The extended family of simple neural network functions is closed
under pointwise scalar multiplication and pointwise vector addition. That is, given a
scalar α ∈ R and two simple neural network functions f, g ∈ Fn,m∞ ,

(i) αf ∈ Fn,m∞ , and

(ii) f + g ∈ Fn,m∞ .

Proof. (i): Let h ∈ N such that f ∈ Fn,mh . Write f = fw where

w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h .

Construct a new parameter w′ ∈ Wn,m
h where

w′ = (αa1, . . . , αah, b1, . . . , bh, c1, . . . , ch, αd) .

Then, for all x,

fw′(x) = (αd) +
h∑

i=1

(αai) tanh(bix+ ci) = α

(
d+

h∑

i=1

ai tanh(bix+ ci)

)
= αfw(x)

Thus, αf = αfw = fw′ ∈ Fn,mh ⊂ Fn,m∞ .
(ii): Let h, k ∈ N such that f ∈ Fn,mh and g ∈ Fn,mk write f = fu and g = fv where

u = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h , and

v = (a′1, . . . , a
′
k, b
′
1, . . . , b

′
k, c
′
1, . . . , c

′
k, d
′) ∈ Wn,m

k .

Construct a new parameter w ∈ Wn,m
h+k where

w = (a1, . . . , ah, a
′
1, . . . , a

′
k, b1, . . . , bh, b

′
1, . . . , b

′
k, c1, . . . , ch, c

′
1, . . . , c

′
k, d+ d′) .

Then, for all x,

fw(x) = (d+ d′) +
h∑

i=1

ai tanh(bix+ ci) +
k∑

i=1

a′i tanh(b′ix+ c′i)

=

(
d+

h∑

i=1

ai tanh(bix+ ci)

)
+

(
d′ +

k∑

i=1

a′i tanh(b′ix+ c′i)

)

= fu(x) + fv(x)

Thus, f + g = fu + fv = fw ∈ Fn,mh+k ⊂ Fn,m∞ .
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3.3 Reducibility: Characterising degeneracy

The determining factor in a simple neural network’s geometry and complexity is whether
the neural network is degenerate or non-degenerate (cf. Section 2.3). Establishing a clear
understanding of the boundary of degeneracy is therefore the first step of my analysis.
As reviewed in Section 2.4, the clearest delineation of degenerate simple neural networks
comes (indirectly) from Sussmann (1992), who gave an effective characterisation of degen-
eracy in terms of reducibility—the presence of simple relationships between a parameter’s
components (cf. Table 2.7). Sussmann’s conditions can be formalised as follows.

Definition 3.22 (Reducible simple neural network parameter). Consider the simple neu-
ral network architecture An,mh with parameter space Wn,m

h . Given a parameter

w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h ,

call w reducible (respectively, irreducible) if it satisfies any (respectively, none) of the
following conditions:

(i) ai = 0 for some i,

(ii) bi = 0 for some i,

(iii) (bi, ci) = (bj, cj) for some i 6= j, or

(iv) (bi, ci) = −(bj, cj) for some i 6= j.

In this thesis, reducibility serves as my operational definition of degeneracy. In this
section, I review the equivalence between reducibility and the alternative characterisations
of non-minimality and richer geometry. Further, I offer a characterisation and visualisa-
tion of the reducible and irreducible subsets of the parameter space, and document some
of their basic properties.

Reducibility and non-minimality

Sussmann (1992) showed that degeneracy can be equivalently characterised in terms of
whether a simple neural network’s function could be implemented with fewer hidden
units. I extend this result to simple neural networks with multiple output units.

Definition 3.23 (Non-minimal simple neural network parameter). Consider a simple
neural network architecture An,mh with parameter space Wn,m

h . A neural network param-
eter w ∈ Wn,m

h is non-minimal if there exists some h′ < h and w′ ∈ Wn,m
h′ such that

fw = fw′ . Otherwise, w is minimal.
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Example 3.24. Consider (0, 1, 0, 0) ∈ W1,1
1 . This parameter implements the function

f0,1,0,0(x) = 0 + 0 tanh(1x + 0) = 0. The same function is implemented by the pa-
rameter 0 ∈ W1,1

0 , so (0, 1, 0, 0) is non-minimal. On the other hand, the parameter
(1, 1, 0, 0) ∈ W1,1

1 implements the function f1,1,0,0(x) = 0 + 1 tanh(1x + 0) = tanh(x),
which is not implemented by any parameter in W1,1

0 (such parameters implement only
constant functions, cf. Remark 3.14), so (1, 1, 0, 0) is minimal.

Theorem 3.25 (Equivalence of reducibility and non-minimality). Consider the simple
neural network architecture An,mh with parameter spaceWn,m

h , and a parameter w ∈ Wn,m
h .

Then w is non-minimal if and only if w is reducible.

Proof. This theorem is a slight generalisation (and reframing) of the result given by
Sussmann (1992), who proved that the (contrapositive) condition holds in the case of
simple neural networks with a single output unit. I generalise the result as follows.5

(⇐): First, if any of the conditions hold, then a smaller functionally equivalent pa-
rameter can be constructed as follows.

(i) If ai = 0 for some i, then hidden unit i fails to contribute to the neural network
function output. Construct a new parameter w′ ∈ Wn,m

h−1 with hidden unit i omitted:

w′ = (a1, . . . , ai−1, ai+1, . . . , ah, b1, . . . , bi−1, bi+1, . . . , bh, c1, . . . , ci−1, ci+1, . . . , ch, d).

Then fw(x)− fw′(x) = ai tanh(bix+ ci) = 0.

(ii) If bi = 0 for some i, then hidden unit i contributes only a constant to the func-
tion. Define d′ = d + ai tanh(ci) ∈ Rm, and construct a new parameter w′ ∈ Wn,m

h−1

with hidden unit i omitted and output layer bias vector changed to d′ to compensate:

w′ = (a1, . . . , ai−1, ai+1, . . . , ah, b1, . . . , bi−1, bi+1, . . . , bh, c1, . . . , ci−1, ci+1, . . . , ch, d
′).

Then fw(x)− fw′(x) = d− d′ + ai tanh(bix+ ci) = 0.

(iii) If (bi, ci) = (bj, cj) for some i 6= j, then hidden units i and j contribute in proportion.
They can be combined into a single unit (say i) with the same incoming weights
and bias, and the combined outgoing weight vector a′ = ai + aj ∈ Rm. Construct a
new parameter w′ ∈ Wn,m

h−1 accordingly:

w′ = (a1, . . . , ai−1, a
′, ai+1, . . . , aj−1, aj+1, . . . , ah,

b1, . . . , bj−1, bj+1, . . . , bh, c1, . . . , cj−1, cj+1, . . . , ch, d).

Then fw(x)−fw′(x) = ai tanh(bix+ci)+aj tanh(bjx+cj)−(ai+aj) tanh(bix+ci) = 0.

5Fukumizu (1996) offers a similar proof.
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(iv) If (bi, ci) = −(bj, cj) for some i 6= j, then hidden units i and j contribute in negative
proportion. Due to the odd property of tanh they can be combined into a single unit
(say i) with incoming weight and bias vectors (bi, ci) and the combined outgoing
weight vector a′ = ai−aj ∈ Rm. Construct a new parameter w′ ∈ Wn,m

h−1 accordingly:

w′ = (a1, . . . , ai−1, a
′, ai+1, . . . , aj−1, aj+1, . . . , ah,

b1, . . . , bj−1, bj+1, . . . , bh, c1, . . . , cj−1, cj+1, . . . , ch, d).

Then, since tanh(z) = − tanh(−z),

fw(x)− fw′(x) = ai tanh(bix+ ci) + aj tanh(bjx+ cj)− (ai − aj) tanh(bix+ ci)

= ai tanh(bix+ ci)− aj tanh(−bjx− cj)− (ai − aj) tanh(bix+ ci)

= 0.

In all cases, the new parameter w′ ∈ Wn,m
h−1 has fw′ = fw, so w is reducible.

(⇒): Let h′ be the smallest number of hidden units required to implement fw, and
let w′ ∈ Wn,m

h′ such that fw′ = fw. Suppose h′ < h. It remains to show that w satisfies
at least one of the reducibility conditions. To achieve this, I reduce to the single-output
case and apply the result of Sussmann (1992).

To reduce to the single-output case, I introduce some notation. Write the vector
function fw : Rn → Rm as a vector of component functions f (1)

w , f
(2)
w , . . . , f

(m)
w : Rn → R

such that for x ∈ Rn,

fw(x) =
(
f (1)
w (x), f (2)

w (x), . . . , f (m)
w (x)

)
.

Each of these component functions is a simple neural network function in Fn,1h with a
structure corresponding to a subgraph of the connection graph of the original neural
network, as illustrated in Figure 3.4.

f
(1)
w

1

2

m

...
...

...

f
(2)
w

1

2

m

...
...

...
· · ·

f
(m)
w

1

2

m

...
...

...

Figure 3.4: The connection graphs of the component functions of fw. The included units
and weights are coloured. Note that the hidden units of each network share the same
incoming weights (and biases, not shown).
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Denote the corresponding (overlapping) subvectors of the parameter w ∈ Wn,m
h as

w(1), . . . , w(m) ∈ Wn,1
h . That is, for µ = 1, . . . ,m,

w(µ) = (a1,µ, . . . , ah,µ, b1, . . . , bh, c1, . . . , ch, dµ) ∈ Wn,1
h .

Apply the same conventions to fw′ to produce f (1)
w′ , . . . , f

(m)
w′ ∈ Fn,1h′ and w′(1), . . . , w

′
(m) ∈

Wn,1
h′ . Note that since fw = fw′ (by assumption), it follows that f (µ)

w = f
(µ)
w′ for µ =

1, . . . ,m.
Apply the results of Sussmann (1992) as follows. For each w(µ) note that w′(µ) is a

functionally equivalent parameter using fewer units. Therefore, the reducibility conditions
(in the special case of m = 1) must hold for each w(µ). Since conditions (ii–iv) only apply
to the incoming weights and biases, if any of these conditions hold for any w(µ), then they
must also hold for w itself and the proof is complete. It remains only to consider the case
in which conditions (ii–iv) fail to hold for any w(µ), and to show that condition (i) holds
for w itself.

To do so, first introduce some further notation. For i = 1, . . . , h denote by ϕi : Rn → R
the function ϕi(x) = tanh(bix + ci). Similarly for j = 1, . . . , h′ denote by ψj : Rn → R
the function ψj(x) = tanh(b′jx + c′j). Then by assumption, no ϕi is constant (ii) and no
two are proportional (iii, iv). The same holds for the ψj—conditions (i–iv) do not hold
for w′(µ), since h

′ was assumed to be minimal from the start. Yet, for µ = 1, . . . ,m, the
linear combination of functions

dµ +
h∑

i=1

ai,µϕi − d′µ −
h′∑

j=1

a′j,µψj = f (µ)
w − f (µ)

w′ = 0

yields the zero function. This linear combination remains when excluding those terms
with ai,µ = 0 or a′j,µ = 0. Applying the same reasoning as that in Sussmann (1992),
due to the independence property of the hyperbolic tangent function (Sussmann, 1992,
Lemma 3.1) the remaining terms must be in bijection, such that

ϕi = ±ψj (†)

for some j with a′j,µ 6= 0 for each i with ai,µ 6= 0.
To complete the proof, note that these relationships (†) between the units of w and

w′ are independent of µ. However, the relationships are “exclusive” in the sense that no
two ϕi can be proportional to the same ψj, else they would also be proportional to each
other—a possibility handled already above. Since there are only h′ units ψ1, . . . , ψh′ , it
follows that there must be one hidden unit i (actually at least h − h′ many units) for
which ai,µ = 0 for all µ = 1, . . . ,m, allowing ϕi to avoid any such relationship. That is,
ai = (ai,1, . . . , ai,m) = 0, satisfying condition (i) for w as required.
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Remark 3.26. The equivalence relies crucially on the fact that the parameter space is
unbounded. In practice, it is common to consider a bounded parameter space. Such a
restriction falsifies the converse direction (reducibility implies non-minimality), as exem-
plified below (Example 3.27). Conversely, the forward direction (non-minimality implies
reducibility) holds despite any restriction of the parameter space.

Example 3.27. Consider the following setting, like the simple setting, but in which
the parameter space for An,mh is constrained with some maximum absolute weight/bias
M > 0 (that is, Wn,m

h = [−M,M ](n+m+1)h+m ⊂ R(n+m+1)h+m). Then the parameter
(M,M, 1, 1, 0, 0, 0) ∈ W1,1

2 , realising the function M tanh(x) +M tanh(x) = 2M tanh(x),
meets condition (iii) of Definition 3.22 and is formally reducible. However, 2M tanh(x)

is not representable as a single unit with bounded weights, so the parameter is minimal.

Remark 3.28. Reducibility is defined as a property of a neural network parameter.
However, non-minimality depends only on the implemented neural network function. It
follows that if two parameters in Wn,m

h are functionally equivalent, then they are either
both reducible or both irreducible.

Remark 3.29. Moreover, it is possible to define the reducibility of neural network func-
tions (with respect to a given architecture). Given a simple neural network architecture
An,mh , the reducible neural network functions are those appearing in the function family
Fn,mh−1 (which includes all smaller families by Proposition 3.19). See Figure 3.5.

Remark 3.30. Note carefully that the definition is sensitive to the choice of architecture.
For example if w′ ∈ Wn,m

h′ is irreducible, then, with respect to An,mh for h > h′, all
functionally equivalent parameters, and fw itself, are reducible (with w′ as witness).

Fn,m
0 Fn,m

1 · · · Fn,m
h−1 Fn,m

h \ Fn,m
h−1 Fn,m

h+1 · · ·

reducible functions irreducible
functions

Figure 3.5: Conceptual illustration of reducibility and irreducibility of neural networks
in terms of function families. The reducible neural network functions are those imple-
mentable within a smaller architecture, that is, those neural network functions from those
smaller architectures’ function families. Note however that this definition is relative to a
choice of architecture.
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Permutation and negation transformations

In order to connect reducibility to the third characterisation of degeneracy, I need to re-
view the basic operations of unit exchange and unit negation characterising the functional
equivalence class in the non-degenerate case (cf. Section 2.3). I begin by formalising these
operations with the following definitions.

Definition 3.31 (Permutation). Let h ∈ N. A permutation (on {1, . . . , h}) is a bijective
function π : {1, . . . , h} → {1, . . . , h}. The set of all permutations on {1, . . . , h} is the
symmetric group on {1, . . . , h}, denoted Sh.

Definition 3.32 (Simple neural network permutation). Consider a simple neural network
architecture An,mh with parameter spaceWn,m

h . Let π ∈ Sh be a permutation. The simple
neural network permutation based on π, denoted Tπ : Wn,m

h → Wn,m
h , is a parameter

transformation function mapping w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) to

Tπ(w) = (aπ(1), . . . , aπ(h), bπ(1), . . . , bπ(h), cπ(1), . . . , cπ(h), d).

Remark 3.33. Conceptually, Tπ applies the permutation π to the hidden units of a
simple neural network, yielding an isomorphic weighted connection graph. Note that this
affects a series of individual unit exchange operations.

Definition 3.34 (Sign vector). Let h ∈ N. A sign vector (of dimension h) is a vector
σ ∈ {−1,+1}h.

Definition 3.35 (Simple neural network negation). Consider a simple neural network
architecture An,mh with parameter space Wn,m

h . Let σ ∈ {−1,+1}h be a sign vector. The
simple neural network negation based on σ, denoted Tσ :Wn,m

h →Wn,m
h , is a parameter

transformation function mapping w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) to

Tσ(w) = (σ1a1, . . . , σhah, σ1b1, . . . , σhbh, σ1c1, . . . , σhch, d).

Remark 3.36. Conceptually, Tσ negates the incoming weights, biases, and outgoing
weights of a subset of the hidden units of a simple neural network.

Proposition 3.37. Consider a simple neural network architecture An,mh with parameter
space Wn,m

h , a permutation π ∈ Sh, and a sign vector σ ∈ {−1,+1}h. Then Tπ and Tσ
are isometries with respect to the uniform distance. That is, for u, v ∈ Wn,m

h ,

‖Tπ(u)− Tπ(v)‖∞ = ‖u− v‖∞ = ‖Tσ(u)− Tσ(v)‖∞ .

Proof. Follows since Tπ and Tσ are linear and the uniform norm is defined as an (un-
ordered) maximum of the absolute value of a vector’s components.
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Functional equivalence class for irreducible parameters

The third characterisation of degeneracy is as the parameters whose functional equiv-
alence class is characterised by more than just the operations defined above. A full
characterisation of the richer functional equivalence classes of reducible parameters is
deferred to Chapter 5, but here I review (a slight extension of) the result of Sussmann
(1992) that these transformations exhaustively describe the functional equivalence class
for irreducible parameters.

Definition 3.38 (Functional equivalence class). Consider a simple neural network archi-
tecture An,mh with parameter space Wn,m

h . Given a parameter w ∈ Wn,m
h , the functional

equivalence class of w, denoted F[w], is the set of functionally equivalent parameters

F[w] = { v ∈ Wn,m
h | fw = fv } ⊂ Wn,m

h .

Theorem 3.39 (Functional equivalence class for irreducible parameters). Consider a
simple neural network architecture An,mh with parameter space Wn,m

h , and a parameter
w ∈ Wn,m

h . If w is irreducible, then the functional equivalence class F[w] is the following
discrete set of cardinality h! · 2h:

F[w] =
⋃

π∈Sh

⋃

σ∈{−1,+1}h
{Tσ(Tπ(w))} .

Proof. (Cardinality): Since w is irreducible, the incoming weight and bias vectors are
non-zero and have distinct lexicographic absolute values (Definition 3.22). It follows that
each permutation and negation transformation produces a distinct parameter vector.
There are exactly h! · 2h such transformations since |Sh| = h! and

∣∣∣{−1,+1}h
∣∣∣ = 2h.

(⊃): Let σ ∈ {−1,+1}h and π ∈ Sh. Write w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d)

and v = Tσ(Tπ(w)). For x ∈ Rn, since tanh(z) = ± tanh(±z) and the sum is commuta-
tive, fv(x) = d+

∑h
i=1 σiaπ(i) tanh

(
σibπ(i)x+ σicπ(i)

)
= d+

∑h
i=1 ai tanh(bix+ci) = fw(x).

Thus Tσ(Tπ(w)) ∈ F[w].
(⊂): Proven by Sussmann (1992, Theorem 2.1) if m = 1. I reduce the m > 1 case

to Sussmann’s result as follows. Suppose w′ ∈ F[w]. Introduce the same decomposition
of the two neural networks as in the proof of Theorem 3.25, namely, the component
functions f (1)

w , . . . , f
(m)
w , f

(1)
w′ , . . . , f

(m)
w′ ∈ Fn,1h implemented by the parameter subvectors

w(1), . . . , w(m), w
′
(1), . . . , w

′
(m) ∈ Wn,1

h (cf. Figure 3.4). For µ = 1, . . . ,m, note that w′(µ) ∈
F
[
w(µ)

]
⊂ Wn,1

h , so by Sussmann (1992, Theorem 2.1), there exists σ(µ) ∈ {−1,+1}h and
π(µ) ∈ Sh such that w′(µ) = Tσ(µ)(Tπ(µ)(w(µ))). Now since the component parameters share
incoming weight and bias vectors, by the cardinality argument above, σ(1) = · · · = σ(m)

and π(1) = · · · = π(m). Dispensing with superscripts, it follows that w′ = Tσ(Tπ(w)).
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Reducible regions of parameter space

I turn from individual reducible parameters to the corresponding subset of the parameter
space. Proposition 3.42 characterises this subset as a union of linear subspaces.

Definition 3.40 (Reducible region). Consider a simple neural network architecture An,mh
with parameter space Wn,m

h . The reducible region of Wn,m
h , denoted R[Wn,m

h ], is the
subset of reducible parameters:

R[Wn,m
h ] = {w ∈ Wn,m

h |w is reducible }.

Definition 3.41 (Irreducible region). Consider a simple neural network architecture
An,mh with parameter space Wn,m

h . The irreducible region of Wn,m
h , denoted I[Wn,m

h ], is
the subset of irreducible parameters:

I[Wn,m
h ] = {w ∈ Wn,m

h |w is irreducible }.

Equivalently, the irreducible region is the complement of the reducible region:

I[Wn,m
h ] =Wn,m

h \R[Wn,m
h ] .

Proposition 3.42. Consider the simple neural network architecture An,mh with parameter
spaceWn,m

h = R(n+m+1)h+m. The reducible region R[Wn,m
h ] ⊂ Wn,m

h is the union of h2 +h

distinct linear subspaces:

R[Wn,m
h ] =

h⋃

i=1

(Ai ∪Bi) ∪
h⋃

i=1

h⋃

j=i+1

(Ci,j ∪Di,j) ,

where, for i = 1, . . . , h and j = i+ 1, . . . , h,

Ai = { (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h | ai = 0 },

Bi = { (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h | bi = 0 },

Ci,j = { (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h | bi = bj, ci = cj }, and

Di,j = { (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h | bi = −bj, ci = −cj }.

Proof. By definition a parameter w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h is re-

ducible if and only if satisfies at least one of the equations ai = 0, bi = 0, (bi, ci) = (bj, cj),
or (bi, ci) = −(bj, cj) for some i and some j > i. Satisfying these equations corresponds
to membership in the subspaces Ai, Bi, Ci,j, or Di,j, respectively.
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Visualising reducible regions

For suitably small architectures it is possible to effectively visualise the reducible region.
Consider the simple neural network architecture A1,1

1 . With just one hidden unit, only
reducibility conditions (i) and (ii) are in play, and the first two dimensions of W1,1

1 = R4

determine reducibility. This allows one to visualise the reducible region in the plane.
Similarly, one can visualise the reducible region of W2,1

1 = R5 and W1,2
1 = R6 in three

dimensions. Figure 3.6 illustrates R
[
W1,1

1

]
, R
[
W2,1

1

]
, and R

[
W1,2

1

]
in this way.

a

b

R[W1,1
1 ]

A1,1
1

b a

c d

b1

b2

a

R[W2,1
1 ]

A2,1
1

b1

b2

a

c d

b1

a2

a1

R[W1,2
1 ]

A1,2
1

b1 a1

a2c

d1

d2

Figure 3.6: Visualisation of the reducible regions (red) for three single-hidden-unit
architectures, (A1,1

1 , A2,1
1 , and A1,2

1 ). A slice of the parameter space (respectively W1,1
1 =

R4, W2,1
1 = R5, and W1,2

1 = R6) is shown with the active dimensions indicated in the
legend (the shape is constant in the other dimensions). The regions generally have one
component where a or (a1, a2) is zero (reducibility condition (i)) and another where b or
(b1, b2) is zero (reducibility condition (ii)).

Consider the simple neural network architecture A1,1
2 with parameter spaceW1,1

2 = R7

With the introduction of a second hidden unit, conditions (iii) and (iv) become relevant.
To emphasise these conditions, fix the outgoing weights a1, a2 non-zero, and one incoming
weight b2 positive (and fix d arbitrarily). There remain three dimensions within which
the region of reducibility can be visualised, as in Figure 3.7.

A1,1
2

a1 6= 0

a2 6= 0

d free

b1

b2

a1

a2

c1

c2
d

−b2

+b2

c1

c2

b1

R[W1,1
2 ]

fixed b2 > 0

c1

c2

b1all b2 6= 0

Figure 3.7: Visualisation of the reducible region (red) for A1,1
2 , an architecture with two

hidden units. Left: slice ofW1,1
2 = R7. The horizontal plane corresponds to condition (ii).

The diagonal horizontal lines correspond to conditions (iii) and (iv). Right: a projection
of the region into three dimensions. Shows the effect of varying b2 6= 0, raising or lowering
the diagonal lines (b2 = 0 is excluded because that entire hyperplane is reducible).
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Properties of reducible and irreducible regions

It is difficult to visualise reducible and irreducible regions in higher-dimensional parameter
spaces. Corollary 3.43 provides some scalable intuition in terms of topology (see, e.g.,
Munkres, 1974), algebraic geometry (see, e.g., Cox et al., 2015), and measure theory (see,
e.g., Cohn, 2013).

Corollary 3.43. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h = R(n+m+1)h+m.

(i) In the standard topology on Wn,m
h , the reducible region R[Wn,m

h ] is a closed set with
empty interior, and the irreducible region I[Wn,m

h ] is a dense, open set.

(ii) The reducible region R[Wn,m
h ] ⊂ Wn,m

h is a real affine algebraic set.

(iii) The reducible region R[Wn,m
h ] ⊂ Wn,m

h has Lebesgue measure zero.

Proof. (i): Each of the (proper) linear subspaces Ai, Bi, Ci,j, and Di,j is closed and has
empty interior. It follows that their (finite) union, R[Wn,m

h ], is closed and has empty
interior. Then the complement, I[Wn,m

h ], is open and dense.
(ii): Each of the linear subspaces from Proposition 3.42 is a real affine algebraic set:

Ai = V(ai,1, . . . , ai,m), Bi = V(bi,1, . . . , bi,n), Ci,j = V(bi,1− bj,1, . . . , bi,n− bj,n, ci− cj), and
Di,j = V(bi,1 + bj,1, . . . , bi,n + bj,n, ci + cj). As the union of a finite collection of real affine
algebraic sets, the reducible region R[Wn,m

h ] is real affine algebraic.
(iii): Each of the (proper) linear subspaces Ai, Bi, Ci,j, and Di,j has Lebesgue measure

zero. It follows that their (finite) union, R[Wn,m
h ], has Lebesgue measure zero.

Remark 3.44. Two intuitive consequences of Corollary 3.43(i) are:

1. There is an open neighbourhood around every irreducible parameter containing
only irreducible parameters.

2. In every open neighbourhood of a reducible parameter, there is an irreducible pa-
rameter.

Remark 3.45. Corollary 3.43(iii) forms part of the technical justification for the em-
phasis on the irreducible (non-degenerate) case in prior work. The main chapters of this
thesis amount to an exploration of the structure of the inside of this measure zero subset
(Chapters 4 and 5) and of its neighbourhood (Chapter 6).
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3.4 Computational complexity theory

In Chapter 6 I draw on computational complexity theory to show that determining the
proximity of a parameter to highly degenerate subsets of the parameter space, and ex-
actly measuring the degree of approximate degeneracy of a parameter, is an intractable
problem. In this section I review the requisite preliminaries.

1. I recall the complexity classes P , NP , NP-complete, and NP-hard, and the con-
cept of polynomial-time problem reduction.

2. I recall classical results on the hardness of the Boolean satisfiability problem and
some restricted variants (including a minor extension of these results).

For a more detailed and rigorous introduction to these topics (for example, in terms of
encodings, languages, and Turing machines), consult Garey and Johnson (1979).

Complex computational problems

Computational complexity theory begins with computational problems. Computational
problems are formal specifications of the desired behaviour of a computer system perform-
ing some task. Specifying a computational problem requires outlining the set of possible
problem instances, or inputs to the system, and the requirements, or desired properties
of the system outputs. The solution to a computational problem is an algorithm that,
given any particular problem instance, computes an output satisfying the requirements.

Problems can be loosely classified based on the nature of their requirements. Two
examples of such classes are as follows.

1. Decision problems, in which the requirement is for the system to output an answer
to a binary “yes” or “no” question about the instance (consider, for example, the
Boolean satisfiability problem, reviewed below).

2. Optimisation problems, in which the system must produce an optimal object with
respect to some criterion (consider, for example, the learning problem).

A fundamental question arises when solving computational problems: what is the
most efficient solution for a given problem, in terms of computational resource usage?
The asymptotic performance of the most efficient algorithms for a computational prob-
lem is a measure of the difficulty—or computational complexity—of the problem. Com-
putational complexity theory classifies computational problems into complexity classes
based on their difficulty. Well-known examples of complexity classes include the classes
P and NP , including, roughly, decision problems for which outputs can be computed
(respectively, the correctness of “yes” outputs verified given a certificate) in a number of
steps polynomial in the size of the instance, using a deterministic model of computation.
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Boolean satisfiability

Boolean satisfiability is an important decision problem, in which the problem instances
are Boolean logic formulae (typically represented in conjunctive normal form), and the
requirement is to output “yes” if there is a satisfying assignment of truth values to the
Boolean variables that makes the whole formula evaluate to “true”, or else to output “no.”
The Boolean satisfiability problem can be formalised as follows.6

Definition 3.46 (Boolean formula). Given n variables v1, . . . , vn, a Boolean formula (in
conjunctive normal form) is a finite conjunction of clauses, where each clause is a finite
disjunction of literals, and each literal is either a variable vi or its negation v̄i (called,
respectively, a positive occurrence or negative occurrence of the variable vi).

Definition 3.47 (Satisfiable Boolean formula). Consider a Boolean formula φ. A truth
assignment is a mapping assigning each of the variables of φ to the values “true” or “false.”
The formula φ is satisfiable if there exists a truth assignment such that each clause
contains at least one positive occurrence of a variable assigned “true,” or at least one
negative occurrence of a variable assigned “false” (such that the entire formula logically
evaluates to “true”).

Example 3.48. Consider six variables denoted v1, . . . , v6. Using ∧ to denote conjunction
and ∨ to denote disjunction, three example Boolean formulae are as follows.

φ1 = (v1 ∨ v2) ∧ (v̄1 ∨ v2) ∧ (v3 ∨ v4) ∧ (v̄3 ∨ v4) ∧ (v̄2 ∨ v̄4)

φ2 = (v̄1 ∨ v2) ∧ (v1 ∨ v2 ∨ v̄3) ∧ (v̄2 ∨ v3)

φ3 = (v̄1 ∨ v̄3 ∨ v4) ∧ (v1 ∨ v̄2 ∨ v5) ∧ (v3 ∨ v̄4 ∨ v6) ∧ (v2 ∨ v̄5) ∧ (v5 ∨ v6) ∧ (v4 ∨ v̄6)

Enumerating possible truth assignments shows that φ1 is unsatisfiable whereas φ2 and φ3

are each satisfiable.

Problem 3.49 (Boolean satisfiability, SAT). Given a Boolean formula φ, decide whether
the formula φ is satisfiable.

A simple algorithm solving the Boolean satisfiability problem involves enumerating
and evaluating the 2n possible truth assignments. While various improvements can be
made to the above (see, e.g., Zhang and Malik, 2002), the precise computational com-
plexity of Boolean satisfiability is a long-standing open problem. Since a satisfying truth
assignment can be verified in polynomial time, SAT ∈ NP . However, no deterministic
polynomial-time solution is known to exist.

6For a more rigorous formalisation, consult, for example, Wolf (2005, §1.2).
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NP-complete problems and problem reductions

If one had a polynomial-time solution for Boolean satisfiability, then it could be trans-
formed into a polynomial-time solution for any problem in NP . This is a property of the
complexity class NP-complete, defined as follows.7

Definition 3.50 (Problem reduction). Let X and Y be two decision problems. A
(polynomial-time) problem reduction from X to Y is a deterministic polynomial-time
algorithm that takes an instance of the problem X as input and returns an equivalent
instance of the problem Y as output, where an instance of Y is equivalent to an instance
of X if both instances require the same decision under their respective problems.

Definition 3.51 (Reducibility between computational problems). Let X and Y be de-
cision problems. If there exists a problem reduction from X to Y , say X is (polynomial-
time) reducible to Y and write

X
P−→ Y.

Definition 3.52 (NP-complete problem). A decision problem Y ∈ NP is NP-complete
if all problems in NP are reducible to Y (that is, ∀X ∈ NP , X P−→ Y ).

The Cook–Levin theorem says that SAT is NP-complete (Cook, 1971; Levin, 1973).
The proof of this theorem involves constructing a Boolean formula encoding the compu-
tation of a verification algorithm for an arbitrary problem in NP (see, e.g., Cook, 1971;
Garey and Johnson, 1979, §2.6; Sipser, 2013, §7.4). This result is important because re-
ducibility is a transitive relation. Therefore, having established SAT as an NP-complete
problem, additional decision problems can be shown to be NP-complete by reduction
from SAT, or from those problems in turn (Cook, 1971; Karp, 1972; Garey and John-
son, 1979). In general, this methodology for proving a new problem to be NP-complete
proceeds as follows (Garey and Johnson, 1979, §3):

1. show that the new problem is itself in NP (by constructing a verification algorithm
that runs in polynomial time); and

2. reduce a known NP-complete problem to the new problem (including showing that
the reduction runs in polynomial time).

Remark 3.53. By definition, the complexity class NP-complete contains only problems
in NP , which in turn contains only decision problems. A related complexity class, NP-
hard, contains problems that are not necessarily in NP , and are not necessarily decision
problems, but to which all problems in NP are still reducible (with a suitably modified
definition of reducibility for non-decision problems). In this thesis, I state my main
results in terms of NP-completeness and, where appropriate, comment on NP-hardness
of related non-decision variants, but I omit a formal treatment of NP-hardness.

7For a more rigorous definition, consult Garey and Johnson (1979, §2.5).
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Restricted Boolean satisfiability

In Chapter 6, I reduce several computational problems to SAT. This involves translating
arbitrary instances of SAT into instances of the new problems. To substantially simplify
the reductions in Chapter 6, I introduce a SAT-variant called restricted Boolean satisfiabil-
ity (denoted xSAT), which has simpler instances, but is still NP-complete (by reduction
from SAT itself; Theorem 3.58). It therefore suffices to consider only instances of xSAT in
Chapter 6.

Definition 3.54 (Bipartite variable–clause incidence graph). Given a Boolean formula φ
with variables v1, . . . , vn and clauses c1 ∧ · · · ∧ cm, the bipartite variable–clause incidence
graph is an undirected graph (V,E) with vertices V = {v1, . . . , vn, c1, . . . , cm} and edges

E = { {vi, cj} | variable vi occurs (as a positive or negative literal) in clause cj }.

Definition 3.55 (Restricted Boolean formula). A restricted Boolean formula is a Boolean
formula φ with variables v1, . . . , vn and clauses c1 ∧ · · · ∧ cm, meeting the following addi-
tional requirements:

1. Each variable vi occurs in either two clauses or three clauses, including exactly one
negative occurrence (and one or two positive occurrences).

2. Each clause cj contains either two or three literals (these may be any combination
of positive and negative).

3. The bipartite variable–clause incidence graph of φ is planar.

Problem 3.56 (Restricted Boolean satisfiability, xSAT). Given a restricted Boolean for-
mula φ, decide whether the formula is satisfiable.

Example 3.57. Observe that φ1, φ2, and φ3 of Example 3.48 meet the restrictions in
Definition 3.55 (for planarity, see Figure 3.8).

(φ1)
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+

+
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−

+

+ −
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− +− +−

+

+
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Figure 3.8: Examples of planar bipartite variable clause incidence graphs for the formulae
in Examples 3.48 and 3.57. Circles indicate variable vertices. Squares indicate clause
vertices. Positive and negative occurrences (edges) are marked accordingly.
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Theorem 3.58 (xSAT is NP-complete).

Proof. xSAT ∈ NP as a restricted variant of SAT ∈ NP . To show SAT P−→ xSAT much of
the work is already done:

1. Cook (1971) reduced SAT to 3-SAT, a variant with at most three literals per clause.

2. Lichtenstein (1982) extended this reduction to planar 3-SAT, a variant with at
most three literals per clause and a planar bipartite clause–variable incidence graph
(in fact the planarity condition studied by Lichtenstein is even stronger).

3. Cerioli et al. (2004; 2011) extended the reduction to planar 3-SAT3̄—a variant of
planar 3-SAT with at most three occurrences per variable.8

It remains to (efficiently) construct from an instance φ of planar 3-SAT3̄ an equisatisfi-
able formula φ′ having additionally (a) at least two occurrences per variable, (b) at least
two variables per clause, and (c) exactly one negative occurrence per variable. This can
be achieved by removing variables, literals, and clauses and negating occurrences in φ

(noting that such operations do not affect the conditions on φ) as follows. First, establish
(a) and (b)9 by exhaustively applying the following (polynomial-time) operations.

(i) If a variable always occurs with one sign (including never or once), remove the vari-
able and all incident clauses. The resulting (sub)formula is equisatisfiable: extend a
satisfying assignment by satisfying the removed clauses with the removed variable.

(ii) If a clause contains a single literal, this variable is determined in a satisfying assign-
ment. Remove the variable and clause along with any other clauses in which the
variable occurs with that sign. For other occurrences, retain the clause but remove
the literal.9 If the resulting formula is unsatisfiable, then the additional variable
won’t help, and if the resulting formula is satisfiable, then so is the original with
the appropriate setting of the variable to satisfy the singleton clause.

Only a polynomial number of operations are possible as each removes one variable. More-
over, thanks to (i), each variable with two occurrences now has one negative occurrence
(as required). For variables with three occurrences, one or two are negative. Establish
(c) by negating all three occurrences for those that have two negative occurrences (so
that the two become positive and the one becomes negative as required). The result is
equisatisfiable because satisfying assignments can be translated by negating the truth
value assigned to this variable. Carrying out this negation operation for the necessary
variables takes polynomial time and completes the reduction.

8Cerioli et al. (2004; 2011) used similar techniques to Tovey (1984), Jansen and Müller (1995), and
Berman et al. (2003), who studied variants of SAT with bounded occurrences per variable.

9If a clause contains no literals, whether this is allowed initially or caused by the removal of a literal
through operation (ii), then the formula is unsatisfiable. Short circuit the entire reduction, returning a
trivial unsatisfiable instance of xSAT, such as φ1 of Examples 3.48 and 3.57.
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Chapter 4

Neural Network Reduction and Rank

The notion of reducibility (Sussmann, 1992; cf. Section 3.3) delineates the boundary
between degenerate and non-degenerate neural networks. Further analysis of the proper-
ties and geometry of individual degenerate neural networks depends on the exact nature
and extent of their degeneracy. In this chapter, I develop an algorithmic framework for
analysing and measuring degeneracy in simple neural networks (neural networks with a
single hidden layer of biased units and the hyperbolic tangent activation function, cf. Sec-
tion 3.2). In particular, my analysis proceeds as follows:

1. In Section 4.1, I define the rank, an idealised measure of the degeneracy of a simple
neural network parameter or function based on the minimum number of hidden
units required to implement the same function. I discuss the rank from several
alternative perspectives.

2. In Section 4.2, I give two algorithms for reducing a simple neural network parameter
into a minimal implementation of the same neural network function, based on the
repeated application of the reducibility conditions (cf. Section 3.3). I also give an
efficient algorithm for computing the rank of a simple neural network parameter.

3. In Section 4.3, I characterise and study the properties of subsets of a given parameter
space with a given maximum rank, showing that these subsets have many properties
in common with the reducible regions studied in Section 3.3.

4. In Section 4.4, I study the properties of families of simple neural network functions
with a given maximum rank. In particular, I show that such function families are
highly non-convex (as a set of functions).

The framework developed in this chapter, especially in Sections 4.1 and 4.2, serves as the
basis for my investigation of the geometry of degenerate neural networks in Chapter 5
and the measure of approximate degeneracy studied in Chapter 6 (which is based on the
neighbourhoods of bounded rank regions of parameter space).
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4.1 The rank of a simple neural network

In this section, I define the rank of a simple neural network parameter as the minimum
number of hidden units required to implement the same neural network function. I
interpret the rank from several additional perspectives:

1. Rank generalises the concept of reducibility of simple neural networks (Section 3.3).

2. Rank stratifies the containment hierarchy of function families (Section 3.2).

3. Rank measures the optimal lossless compressibility of a neural network function,
in terms of the number of hidden units that can be removed without changing the
function implemented.

4. Rank can be seen as a generalisation of the homonymous measure familiar from
linear algebra, the rank of a matrix or linear transformation, which corresponds to
the minimum number of hidden units required to implement a function with an
unbiased linear neural network.

Defining rank

I formalise the definition sketched above as follows.

Definition 4.1 (Rank of a simple neural network parameter). Consider a simple neural
network architecture An,mh with parameter space Wn,m

h . Let w ∈ Wn,m
h . Define the rank

of w, denoted rank(w), as the smallest r for which fw ∈ Fn,mr :

rank(w) = min { r ∈ N | fw ∈ Fn,mr }.

That is, the rank of w is the minimum number of hidden units required to implement fw.

Example 4.2. Consider w = (1, 1, 1, 1, 1,−1, 0,−1, 1, 0) ∈ W1,1
3 . Then

fw(x) = tanh(x) + tanh(x− 1) + tanh(1− x) = tanh(x).

Thus fw ∈ F1,1
1 ⊂ F1,1

2 ⊂ · · · . Moreover, fw /∈ F1,1
0 (= constant functions). Thus

rank(w) = min {1, 2, . . .} = 1.

Remark 4.3. The rank is defined as a property of a neural network parameter. However,
the definition depends on the implemented neural network function, rather than the
parameter itself. If two parameters in Wn,m

h are functionally equivalent, then they have
the same rank.
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Remark 4.4. The minimum number of units required to implement a neural network
function does not depend on the original number of units used to specify the function.
It follows that if two neural network parameters in two different parameter spaces are
functionally equivalent, then they still have the same rank.

Remarks 4.3 and 4.4 indicate that rank is also a well-defined property of a simple
neural network function. Unlike for reducibility (cf. Remark 3.30), the definition is even
independent of the choice of architecture in which to represent the functions. This leads
to the following definition of the rank of a simple neural network function.

Definition 4.5 (Rank of a simple neural network function). Consider the extended family
of simple neural network functions Fn,m∞ . Let f ∈ Fn,m∞ . Define the rank of f , denoted
rank(f), as the smallest number of hidden units r such that f is in the function family
Fn,mr . That is,

rank(f) = min { r ∈ N | f ∈ Fn,mr }.

Interpretation 1: Rank as a generalisation of reducibility

Recall that, as illustrated in Figure 3.5, reducible neural networks are those whose neural
network functions arise at some earlier layer of the containment hierarchy than the layer
corresponding to the present architecture. This suggests asking, how much earlier does
a given neural network function arise? This question is answered by the rank, which
corresponds to the smallest h′ available for the definition of non-minimality.

Unlike reducibility, the rank of a neural network is independent of a choice of architec-
ture. However, given any particular architecture, rank and reducibility are closely linked,
as captured in the following result.

Proposition 4.6. Consider a simple neural network architecture An,mh with parameter
space Wn,m

h . For a neural network parameter w ∈ Wn,m
h ,

(i) rank(w) ≤ h;

(ii) w is reducible if and only if rank(w) < h; and

(iii) w is irreducible if and only if rank(w) = h.

Proof. (i): Since fw ∈ Fn,mh , h is in the set whose minimum is the rank of w (Defini-
tion 4.1). It follows that h is an upper bound on the rank.

(ii): If w is reducible then by Theorem 3.25 it is also non-minimal, that is, there is a
functionally equivalent w′ ∈ Wn,m

h′ where h′ < h. It follows that fw = fw′ ∈ Fn,mh′ . Then,
by (i), rank(w) ≤ h′ < h. Conversely, if rank(w) = h′ < h then by definition fw ∈ Fn,mh′ .
It follows that there is a functionally equivalent w′ ∈ Wn,m

h′ , and so w is non-minimal and
reducible.

(iii): Follows from (i) and (ii).
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Interpretation 2: Rank stratifies the containment hierarchy

The rank of a function allows one to define a stratified version of the containment hierar-
chy of simple neural network function families. This notion is formalised in Definition 4.7
and Proposition 4.8 and illustrated in Figure 4.1.

Definition 4.7 (Family of fixed-rank simple neural network functions). Let n,m ∈ N+

and r ∈ N. Define the family of fixed-rank simple neural network functions with rank r,
denoted Rn,m

r , as
Rn,m
r = { f ∈ Fn,m∞ | rank(f) = r }.

Proposition 4.8. Let n,m ∈ N+. The sequence Rn,m
0 ,Rn,m

1 ,Rn,m
2 , . . . forms a stratified

version of the containment hierarchy Fn,m0 ( Fn,m1 ( Fn,m2 ( · · · . That is,

(i) Rn,m
0 = Fn,m0 and, for r ≥ 1, Rn,m

r = Fn,mr \ Fn,mr−1 ;

(ii)
h⋃

r=0

Rn,m
r = Fn,mh for h ≥ 0; and

(iii) Rn,m
r ∩Rn,m

r′ = ∅ for r 6= r′.

Proof. (i): f ∈ Rn,m
r if and only if r = min { r′ | f ∈ Fn,mr′ } if and only if f ∈ Fn,mr and

f /∈ Fn,mr′ for r′ < r if and only if f ∈ Fn,mr \Fn,mr−1 (including for r = 0, cf. Remark 3.14).
(ii): By (i) and induction on h, with base case Rn,m

0 = Fn,m0 , and inductive case

h⋃

r=0

Rn,m
r =

(
h−1⋃

r=0

Rn,m
r

)
∪Rn,m

h = Fn,mh−1 ∪
(
Fn,mh \ Fn,mh−1

)
= Fn,mh .

(iii): Assume r′ < r (without losing generality). Then by (i) and Proposition 3.19,
Rn,m
r = Fn,mr \ Fn,mr−1 and Rn,m

r′ ⊂ Fn,mr′ ⊂ Fn,mr−1 . The result follows.

Rn,m
0 Rn,m

1 · · · Rn,m
h−1 Rn,m

h Rn,m
h+1 · · ·

Fn,m
∞

Figure 4.1: Conceptual illustration of the stratified hierarchy of rank-r simple neural
network function families Rn,m

0 ,Rn,m
1 , . . . ,Rn,m

h−1,Rn,m
h ,Rn,m

h+1, . . . ( Fn,m∞ . Compared with
Proposition 3.19 (see Figure 3.3), the elements of the stratified hierarchy are disjoint.
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Interpretation 3: Rank as neural network compression

The compressibility of a neural network—how much its description length can be reduced
with various coding and compression techniques—has been proposed as a learning ob-
jective (see, e.g., Hinton and van Camp, 1993; Aytekin et al., 2019) and used as a basis
for compression-based generalisation bounds (see, e.g., Suzuki et al., 2020a;b). Com-
pression also has applications in optimising neural networks for low-resource computing
environments (see, e.g., Cheng et al., 2018; 2020; Choudhary et al., 2020).

Since one means of compressing a neural network is by removing hidden units, and
the rank measures the minimum number of units required to implement a given neural
network function, the rank represents an idealised measure of lossless compressibility.1

Interpretation 4: Rank as compared to that of linear algebra

In naming the measure of degeneracy described in this chapter the “rank” I evoke an
analogy to the familiar notion from linear algebra of the rank of a linear transformation
or matrix (see, e.g., Halmos, 1958; Axler, 2015). The rank of a linear transformation is
the dimension of its image (e.g., Halmos, 1958, §50). Equivalently, the rank of a matrix
is the dimension of its row (or column) space (e.g., Axler, 2015).

The analogy proceeds as follows. Consider an m × n matrix F . Then the rank of F
is exactly the minimum number of hidden units h required to implement the correspond-
ing linear transformation f : Rn → Rm as a single-hidden-layer unbiased linear neural
network function, that is, as a function of the form

f(x) =
h∑

i=1

ai id(bix) = ABx

where A is an m×h matrix with columns a1, . . . , ah ∈ Rm and B is an h×n matrix with
rows b1, . . . , bh ∈ Rn. Such a minimal AB corresponds to a full-rank factorisation of F
(see, e.g., Piziak and Odell, 1999).

Of course, the analogy is not complete. For example, one important difference between
these notions of rank is that the rank of a linear transformation is bounded by its input
and output dimension, while the rank of a simple neural network, even one implementing
functions from R to R, is unbounded.

1This notion of compressibility is idealised for at least three reasons. First, units are not the only
measure of a network’s description length. For example, the sparsity and precision of the weights may
play a role. Second, in practice, one need not preserve the function exactly—it suffices to approximately
preserve the function (lossy vs. lossless compressibility), and moreover the degree of approximation may
be allowed to deteriorate for unlikely inputs. In Appendix A, I develop a variant of rank that corresponds
more closely to approximate equality of functions on relevant inputs. Finally, the question ignores the
task of finding a compressed parameter. In Section 4.2, I give efficient algorithms for computing a
minimal implementation of a neural network function. Minimising a lossy compressed implementation
should be substantially more difficult in general (cf. Chapter 6 and Appendix A).
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4.2 Reducing parameters and computing rank

In this section, I derive an efficient algorithm for computing the rank of a simple neural
network parameter. The idea behind the algorithm is to eliminate the local redundancy
between units in the parameter (cf. Section 2.4) to find an irreducible, functionally equiv-
alent parameter in an architecture with (possibly) fewer hidden units. Call this a reduced
parameter. The rank is the number of hidden units in the reduced parameter (cf. Propo-
sition 4.6).

In total, I present three algorithms in this section.

1. I present Algorithm 4.9, SlowReduce, a simple algorithm for computing a reduced
parameter. The algorithm works by repeated application of the constructions in
the proof of Theorem 3.25, removing hidden units one by one until an irreducible
parameter is obtained. The algorithm runs time cubic in the initial number of
hidden units.

2. I present Algorithm 4.12, FastReduce, an improved algorithm for computing a
reduced parameter. The algorithm works by detecting eliminable units in a small
number of passes, running in linear time after pre-sorting the hidden units.

3. Finally, I present Algorithm 4.15, Rank, an algorithm for computing the rank,
by following Algorithm 4.12 but only performing those computations necessary for
obtaining the final count of hidden units (not the reduced parameter itself).

Before introducing the algorithms, one customary qualification regarding complexity
analysis. All times quoted above (and given in more detail throughout this section)
assume a standard random-access model of computation and, moreover, assume that all
parameter vectors are represented as arrays of bounded-precision components, such as
using constant-width floating point numbers.

Computing reduced parameters by iteration

The following parameter reduction algorithm, SlowReduce, proceeds by searching for
units meeting the reducibility conditions and then applying the constructions from the
proof of Theorem 3.25 to replace the parameter with a smaller one. This process is
repeated until an irreducible parameter is reduced.

Algorithm 4.9 formalises the algorithm. Some details, such as the order in which
conditions are selected, are left unspecified. The result is an intentionally simplistic
algorithm that serves as a stepping stone to the faster algorithm described below, and
also as a basis for proofs involving parameter reduction (see, e.g., Section 4.3). For brevity,
the details of the conditions and constructions are not restated within the algorithm—see
Theorem 3.25 and its proof in Section 3.3.
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Algorithm 4.9 (Parameter reduction by iteration). Given an initial simple neural net-
work architecture An,mh with parameter space Wn,m

h , proceed:

1: procedure SlowReduce(w ∈ Wn,m
h )

2: while w is reducible do . check using conditions from Definition 3.22
3: w ← new parameter w′ ∈ Wn,m

h−1 constructed as in Theorem 3.25 proof
4: h← h− 1

5: end while
6: return w

7: end procedure

Correctness Theorem 4.10 (Algorithm 4.9). Given a simple neural network architec-
ture An,mh with parameter spaceWn,m

h , and a simple neural network parameter w ∈ Wn,m
h ,

compute w′ = SlowReduce(w) ∈ Wn,m
h′ . Then:

(i) the computation terminates;

(ii) fw′ = fw; and

(iii) w′ ∈ Wn,m
h′ is irreducible.

Proof. For (i), note that each iteration reduces the number of hidden units by exactly
one, which can happen at most h times. For (ii), each parameter update preserves the
neural network function (see Theorem 3.25 proof), so the final parameter is functionally
equivalent to the input parameter, as required. For (iii), note that this is precisely the
condition that allows termination of the loop.

Remark 4.11. Algorithm 4.9 is intentionally simple. A coarse runtime analysis puts its
complexity at cubic in h, in particular, at O(nh3 +mh2). The main operation is checking
the reducibility conditions, of which there are O(h) involving vectors in Rm and O(h2)

involving vectors in Rn, and which is performed no more than h times.

Computing reduced parameters by partitioning

Algorithm 4.9 might be improved by applying the reducibility conditions in a more effec-
tive order. Note that the constructions in the proof of Theorem 3.25 involve either

1. unit elimination: removing a unit, possibly with an adjustment to the outgoing
unit bias vector, if the unit meets reducibility conditions (i) or (ii); or

2. unit merging: coalescing a pair of units meeting reducibility conditions (iii) or
(iv) into a single unit with a combined outgoing weight vector (possibly with an
associated sign change).
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A key insight towards a more efficient algorithm is that such opportunities for reduction
can mostly be detected based on the original parameter, in the following way.

1. Unit elimination applies to all units with zero incoming or outgoing weight vector.
These can be identified and removed in one pass (or two separate passes, see below).

2. Unit merging applies to all groups of units with the same lexicographic absolute
incoming weight and bias vector (cf. Definition 3.9). Such units can also be identified
(efficiently using lexicographic sorting) and merged en masse in a single pass.

Moreover, the constructions have limited interaction. Unit elimination cannot produce
additional units susceptible to reduction. Unit merging may produce units with zero
outgoing weight, but this possibility can be handled by performing the merging before
the elimination. This strategy for producing a reduced parameter is formalised in Algo-
rithm 4.12.

Algorithm 4.12 (Parameter reduction by partitioning). Given an initial simple neural
network architecture An,mh with parameter space Wn,m

h , proceed:

1: procedure FastReduce(w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h )

2: . Pass 1: Identify and remove units with zero incoming weight /

3: I ← { i ∈ {1, . . . , h} | bi 6= 0 }
4: δ ← d+

∑
i/∈I tanh(ci) · ai

5: . Pass 2: Identify and merge units with shared incoming weights and biases /

6: Π1, . . . ,Πk ← partition I by the relation i ∼ j ⇔ abslex(bi, ci) = abslex(bj, cj)

7: for i← 1, . . . , k do
8: αi ←

∑
j∈Πi

signlex(bj) aj

9: βi ← signlex(bj) bj . arbitrary j ∈ Πi

10: γi ← signlex(bj) cj

11: end for
12: . Pass 3: Identify and remove merged units with zero outgoing weight /

13: i1, . . . , ir ← { i ∈ {1, . . . , k} |αi 6= 0 }
14: return (αi1 , . . . , αir , βi1 , . . . , βir , γi1 , . . . , γir , δ) ∈ Wn,m

r

15: end procedure

Correctness Theorem 4.13 (Algorithm 4.12). Given a simple neural network architec-
ture An,mh with parameter spaceWn,m

h , and a simple neural network parameter w ∈ Wn,m
h ,

compute w′ = FastReduce(w) ∈ Wn,m
r . Then

(i) fw′ = fw; and

(ii) w′ is irreducible.
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Proof. (i): The idea is simpler than notation permits the demonstration to be. Basically,
I show that the summation defining fw can be rearranged so as to have the form of fw′ .
Formally, for each x ∈ Rn,

fw(x) = d+
h∑

i=1

ai tanh(bix+ ci)

= d+
∑

i/∈I
ai tanh(bix+ ci) +

∑

i∈I
ai tanh(bix+ ci) (cf. line 3)

= d+
∑

i/∈I
ai tanh(ci) +

∑

i∈I
ai tanh(bix+ ci) (i /∈ I ⇒ bi = 0)

= δ +
∑

i∈I
ai tanh(bix+ ci) (cf. line 4)

= δ +
k∑

i=1

∑

j∈Πi

aj tanh(bjx+ cj) (cf. line 6)

= δ +
k∑

i=1

∑

j∈Πi

signlex(bj) aj tanh(signlex(bj) bjx+ signlex(bj) cj) (tanh odd)

= δ +
k∑

i=1

(∑

j∈Πi

signlex(bj) aj

)
tanh(βix+ γi) (cf. line 9; †)

= δ +
k∑

i=1

αi tanh(βix+ γi) (cf. line 8)

= δ +
r∑

j=1

αij tanh(βijx+ γij) (cf. line 13)

= fw′(x). (cf. line 14)

Step (†) requires clarification: in this step the incoming weights and biases of the units
within each group of the partition are replaced with βi and γi. This preserves those
units: for j ∈ Πi, bj 6= 0 (by an earlier step), and it follows that signlex(bj) (bj, cj) =

signlex(bj, cj) (bj, cj) = abslex(bj, cj), a constant within Πi that also equals (βi, γi).
(ii): Each of the reducibility conditions (Definition 3.22) fails to hold for w′ ∈ Wn,m

r :
no αij or βij is zero, chiefly because of lines 13 and 3, and no (βij , γij) = ±(βij′ , γij′ ),
chiefly because of line 6.

Remark 4.14. The first and third passes run in O(nh + mh) time. The second pass
runs in O(nh log(h) +mh) time if the partitioning step is performed by first sorting the
lexicographic absolute values of the incoming weight and bias vectors and then group-
ing vectors with the same lexicographic absolute value. The total runtime is therefore
O(nh log(h) +mh).
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Computing rank

Computing the rank itself is trivial given a reduction algorithm: simply run the reduction
algorithm and count the units that remain. The following is a slightly streamlined al-
gorithm, following Algorithm 4.12 but including only those steps that influence the final
count.

Algorithm 4.15 (Rank). Given a simple neural network architecture An,mh with param-
eter space Wn,m

h , proceed:

1: procedure Rank(w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h )

2: . Identify units with non-zero incoming weight /

3: I ← { i ∈ {1, . . . , h} | bi 6= 0 }
4: . Compute outgoing weights for merged units /

5: Π1, . . . ,Πk ← partition I by the relation i ∼ j ⇔ abslex(bi, ci) = abslex(bj, cj)

6: for j ← 1, . . . , k do
7: αj ←

∑
i∈Πj

signlex(bi) ai

8: end for
9: . Count merged units with non-zero outgoing weights /

10: return |{ j ∈ {1, . . . , k} |αj 6= 0 }| . |S| denotes set cardinality
11: end procedure

Correctness Theorem 4.16 (Algorithm 4.15). Given a simple neural network architec-
ture An,mh with parameter spaceWn,m

h , and a simple neural network parameter w ∈ Wn,m
h ,

rank(w) = Rank(w).

Proof. Comparing Algorithm 4.15 with Algorithm 4.12 reveals that Rank(w) = r, the
number of units in the reduced parameter FastReduce(w) ∈ Wn,m

r , an irreducible
parameter functionally equivalent to w (by Correctness Theorem 4.13). The result follows
by Proposition 4.6 and Remark 4.4.

Remark 4.17. Though some steps are removed compared to Algorithm 4.12, the asymp-
totic time complexity of Algorithm 4.15 remainsO(nh log(h)+mh) (following the analysis
in Remark 4.14).
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4.3 Bounded rank regions of parameter space

The concept of rank allows one to define and study regions within a given parameter
space comprising parameters of a given maximum rank. For maximum rank less than the
number of available hidden units, these regions are subsets of the reducible region studied
in Section 3.3, with which they share several important basic properties. In this section,
I define such regions, characterise them as a union of linear subspaces of the parameter
space, and document some of their properties.

Defining bounded rank regions

The following definition formalises the regions studied in this section.

Definition 4.18 (Bounded rank region). Consider a simple neural network architecture
An,mh with parameter space Wn,m

h . Given a maximum rank r ∈ N, the bounded rank
region of rank r, denoted Br[Wn,m

h ], is the subset of parameters of rank at most r:

Br[Wn,m
h ] = {w ∈ Wn,m

h | rank(w) ≤ r }.

The following proposition notes some basic properties of the bounded rank regions for
varying maximum rank r, and their relation to the reducible region of Section 3.3.

Proposition 4.19. Consider a simple neural network architecture An,mh with parameter
space Wn,m

h . Then (with ( denoting strict inclusion):

(i) If r ≥ h, then Br[Wn,m
h ] =Wn,m

h .

(ii) Bh−1[Wn,m
h ] = R[Wn,m

h ].

(iii) If r < r′ ≤ h, then Br[Wn,m
h ] ( Br′ [Wn,m

h ].

(iv) If r < h− 1, then Br[Wn,m
h ] ( R[Wn,m

h ].

Proof. (i): If w ∈ Wn,m
h then, by Proposition 4.6, rank(w) ≤ h ≤ r, so w ∈ Br[Wn,m

h ].
Thus Wn,m

h ⊂ Br[Wn,m
h ]. Since Br[Wn,m

h ] ⊂ Wn,m
h it follows that Br[Wn,m

h ] =Wn,m
h .

(ii): w ∈ R[Wn,m
h ] if and only if rank(w) < h (by Proposition 4.6) if and only if

rank(w) ≤ h− 1 (rank is an integer) if and only if Bh−1[Wn,m
h ].

(iii): If w ∈ Br[Wn,m
h ] then rank(w) ≤ r < r′ so w ∈ Br[Wn,m

h ]. An irreducible
parameter in Wn,m

r′ embedded into Wn,m
h (cf. Proposition 3.19) has rank r′, showing that

the inclusion is strict.
(iv): Follows from (ii) and (iii).
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Characterising bounded rank regions

Bounded rank regions generally have more complex shapes compared to reducible regions.
The key to a clearer understanding of bounded rank regions is that for each parameter
in Br[Wn,m

h ], at least h − r units would be removed by the simple reduction algorithm
(Algorithm 4.9). Considering the various possible sequences of reduction operations used
in the first h− r iterations of the simple reduction algorithm leads to a characterisation
of the bounded rank region as a union of linear subspaces.

To this end, Definition 4.20 captures the notion of a “sequence of h − r reduction
operations” as a reduction trace of length h − r. The various reduction traces of length
h− r lead to the various components of my characterisation of the bounded rank region
in Theorem 4.21.

Definition 4.20 (Reduction trace). Given h ∈ N, let H = {1, . . . , h}. A reduction trace
on h units is a 5-tuple (Ri, Rii, Riii, Riv, µ) where

1. Ri, Rii, Riii, Riv are non-overlapping, possibly empty subsets of H (interpreted as
sets of units removed by reducibility conditions (i) through (iv) respectively); and

2. µ : Riii ∪Riv → H \ (Riii ∪Riv) (interpreted as mapping from units removed under
reducibility conditions (iii) and (iv) to the units with which they are merged).

Moreover, define the length of the reduction trace as |Ri| + |Rii| + |Riii| + |Riv|, and, for
k ∈ N, denote by ΞR(h, k) the set of all reduction traces of length k on h units.

Theorem 4.21 (Characterisation of bounded rank regions). Consider the simple neural
network architecture An,mh with parameter space Wn,m

h = R(n+m+1)h+m. If r < h, the
bounded rank region Br[Wn,m

h ] ⊂ Wn,m
h is a union of linear subspaces

Br[Wn,m
h ] =

⋃

ξ∈ΞR(h,h−r)
Sξ

where ΞR(h, h− r) denotes all reduction traces of length h− r on h units and

SRi,Rii,Riii,Riv,µ =
⋂

i∈Ri

Ai,Riii∩µ−1[i],Riv∩µ−1[i] ∩
⋂

i∈Rii

Bi ∩
⋂

j∈Riii

Cµ(j),j ∩
⋂

j∈Riv

Dµ(j),j;

Ai,J,K =

{
(a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m

h

∣∣∣∣∣ ai +
∑

j∈J
aj −

∑

k∈K
ak = 0

}
,

Bi = { (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h | bi = 0 },

Ci,j = { (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h | bi = bj, ci = cj }, and

Di,j = { (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h | bi = −bj, ci = −cj }.
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Proof. (
⋃
ξ Sξ ⊂ Br[Wn,m

h ]): Suppose w ∈ ⋃ξ Sξ. Then there is some reduction trace
ξ = (Ri, Rii, Riii, Riv, µ) ∈ ΞR(h, h− r) with

w ∈ Sξ =
⋂

i∈Ri

Ai,Riii∩µ−1[i],Riv∩µ−1[i] ∩
⋂

i∈Rii

Bi ∩
⋂

j∈Riii

Cµ(j),j ∩
⋂

j∈Riv

Dµ(j),j.

Construct a functionally equivalent parameter in Wn,m
r by removing each of the h − r

units in Ri, Rii, Riii, Riv as follows.

1. For each unit j ∈ Riii, since w ∈ Cµ(j),j the unit shares incoming weight and bias
vector with unit µ(j). Merge the two units as per the construction for reducibility
condition (iii) in Theorem 3.25.

2. Likewise, for each unit j ∈ Riv, since w ∈ Dµ(j),j, the unit shares (negated) incoming
weight and bias vector with unit µ(j). Merge the two units as per the construction
for reducibility condition (iv) in Theorem 3.25.

3. For each unit i ∈ Rii, since w ∈ Bi the unit has zero incoming weight vector. Elimi-
nate this unit as per the construction for reducibility condition (ii) in Theorem 3.25.

4. Finally, for each unit i ∈ Ri, since w ∈ Ai,Riii∩µ−1[i],Riv∩µ−1[i], after the above merging
steps have merged other units into unit i (if any), the total outgoing weight will
be zero. Eliminate this unit as per the construction for reducibility condition (i) in
Theorem 3.25.

This construction shows that rank(w) ≤ r, thus w ∈ Br[Wn,m
h ].

(Br[Wn,m
h ] ⊂ ⋃ξ Sξ): Suppose w ∈ Br[Wn,m

h ]. Since the rank of w is then at most
r the execution of Algorithm 4.9 on w will last for at least h − r iterations. Run the
algorithm for h−r iterations and construct a reduction trace as follows. Starting with an
initially empty Ri, Rii, Riii, Riv, each time a unit is removed by a reducibility condition,
add the unit’s index (in the original parameter) to the corresponding subset. Moreover,
each time a unit j is merged into unit i by condition (iii) or (iv), update µ as follows:

1. If the unit was merged by condition (iii), remap µ(k) to i for any units k ∈ µ−1[j]

previously merged with unit j—these units also could have been merged with unit
i by the same reducibility condition.

2. If the unit was merged by condition (iv), again remap µ(k) to i for k ∈ µ−1[j], but
this time also move the corresponding units from Riii to Riv and vice versa, since
their relationship with i is negated compared to their relationship with j.

3. Either way, set µ(j) = i.

By the applied reducibility conditions, w ∈ SRi,Rii,Riii,Riv,µ. Thus, w ∈
⋃
ξ∈ΞR(h,h−r) Sξ.
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A detailed example characterisation

For small architectures, it is possible to explicitly construct the bounded rank regions.
Consider the simple neural network architecture A1,1

2 with parameter space W1,1
2 = R7.

The corresponding bounded rank region of rank 0, B0

[
W1,1

2

]
, contains all two-unit neu-

ral network parameters implementing constant functions.2 By Theorem 4.21, B0

[
W1,1

2

]

can be understood in terms of all possible reduction traces of length two for two units.
There are twelve reduction traces in ΞR(2, 2), namely those listed in Table 4.2. The
corresponding subspaces of W1,1

2 = R7 are computed in Table 4.3.

ξ Ri Rii Riii Riv µ ξ Ri Rii Riii Riv µ

ξ1 {1, 2} ∅ ∅ ∅ – ξ2 ∅ {1, 2} ∅ ∅ –
ξ3 {1} {2} ∅ ∅ – ξ4 {2} {1} ∅ ∅ –
ξ5 {1} ∅ {2} ∅ 2 7→ 1 ξ6 {2} ∅ {1} ∅ 1 7→ 2

ξ7 {1} ∅ ∅ {2} 2 7→ 1 ξ8 {2} ∅ ∅ {1} 1 7→ 2

ξ9 ∅ {1} {2} ∅ 2 7→ 1 ξ10 ∅ {2} {1} ∅ 1 7→ 2

ξ11 ∅ {1} ∅ {2} 2 7→ 1 ξ12 ∅ {2} ∅ {1} 1 7→ 2

Table 4.2: The reduction traces of length two given two units: ΞR(2, 2) = {ξ1, . . . , ξ12}.

Subspace Intersection form Constraints on w = (a1, a2, b1, b2, c1, c2, d) ∈ W1,1
2

Sξ1 A1,∅,∅ ∩ A2,∅,∅ a1 = 0, a2 = 0

Sξ2 B1 ∩B2 b1 = 0, b2 = 0

Sξ3 A1,∅,∅ ∩B2 a1 = 0, b2 = 0

Sξ4 A2,∅,∅ ∩B1 a2 = 0, b1 = 0

Sξ5 A1,{2},∅ ∩ C1,2 a1 + a2 = 0, b1 = b2, c1 = c2

Sξ6 A2,{1},∅ ∩ C2,1 a2 + a1 = 0, b2 = b1, c2 = c1

Sξ7 A1,∅,{2} ∩D1,2 a1 − a2 = 0, b1 = −b2, c1 = −c2

Sξ8 A2,∅,{1} ∩D2,1 a2 − a1 = 0, b2 = −b1, c2 = −c1

Sξ9 B1 ∩ C1,2 b1 = 0, b1 = b2, c1 = c2

Sξ10 B2 ∩ C2,1 b2 = 0, b2 = b1, c2 = c1

Sξ11 B1 ∩D1,2 b1 = 0, b1 = −b2, c1 = −c2

Sξ12 B2 ∩D2,1 b2 = 0, b2 = −b1, c2 = −c1

Table 4.3: Component subspaces of bounded rank region B0

[
W1,1

2

]
=
⋃12
i=1 Sξi . Note

that the subspaces are not necessarily distinct. In particular, Sξ5 = Sξ6 , Sξ7 = Sξ8 ,
Sξ9 = Sξ10 , and Sξ11 = Sξ12 . Moreover, Sξ9 , . . . , Sξ12 ⊂ Sξ2 .

2B0

[
W1,1

2

]
is the simplest non-trivial bounded rank region. In any architecture with a single hidden

unit, the rank 0 region is the reducible region, as visualised in Figure 3.6 for several small architectures
(and the rank 1 region is the entire space). Likewise, B1

[
W1,1

2

]
= R

[
W1,1

2

]
, as visualised in Figure 3.7.
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Properties of bounded rank regions

While it is difficult to compute and visualise bounded rank regions in higher-dimensional
parameter spaces, the characterisations in Proposition 4.19 and Theorem 4.21 provide
some scalable intuition. From these results it follows that the bounded rank regions
share many properties with the reducible regions analysed in Section 3.3, as follows.

Corollary 4.22. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h = R(n+m+1)h+m. Let r < h be a maximum rank.

(i) In the standard topology on Wn,m
h , the bounded rank region Br[Wn,m

h ] is a closed set
with empty interior, and the complement Wn,m

h \Br[Wn,m
h ] is a dense, open set.

(ii) The bounded rank region Br[Wn,m
h ] is a real affine algebraic set.

(iii) Let p = (n + m + 1)h + m. The bounded rank region B0[Wn,m
h ] has p-dimensional

Lebesgue measure zero.

Proof. Proposition 4.19 shows that Br[Wn,m
h ] ⊂ R[Wn,m

h ]. From this, property (iii)
follows by Corollary 3.43(iii), and the emptiness of the interior and denseness of the
complement follow by Corollary 3.43(i). For property (i) it remains to show that the
bounded rank region is closed (the complement is therefore open). Closedness follows
from Theorem 4.21, showing that Br[Wn,m

h ] is a finite union of linear subspaces of Wn,m
h ,

which are themselves closed. In fact the same linear subspaces are real affine algebraic sets
(cf. Corollary 3.43(ii) for a similar proof) and so their finite union is real affine algebraic,
as required for (ii).

Refer to Remark 3.44 and other remarks in Section 3.3 for some implications of these
properties. I use the closedness property in the proof of Proposition 6.3 in Chapter 6.
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4.4 Bounded rank function families

The sets of functions implemented by neural networks of a given architecture are of
interest in deep learning theory (e.g., Rannen Triki, 2020; Petersen et al., 2021). In the
case of simple neural network architecture An,mh , the set of functions is Fn,mh , the family
of simple neural networks on h units (Definition 3.18). Given the framework of this
chapter, the function family Fn,mh can also be understood as the subset of the extended
family of simple neural network functions Fn,m∞ containing functions of rank at most h
(cf. Proposition 4.8(ii)).

In this section, I study the properties of these bounded rank function families as
subsets of Fn,m∞ . I show that, though Fn,m∞ has a vector space structure (Proposition 3.21),
the bounded rank subsets Fn,mh are not subspaces (they are not closed under pointwise
vector addition). Moreover, I show that the bounded rank function families are highly
non-convex as sets of functions.3

Vector operations and rank

The following result shows how the vector operations interact with rank.

Proposition 4.23. Consider an extended family of simple neural network functions Fn,m∞ .
Given two simple neural network functions f, g ∈ Fn,m∞ and a non-zero scalar α ∈ R\{0}:

(i) rank(0f) = 0;

(ii) rank(αf) = rank(f); and

(iii) |rank(f)− rank(g)| ≤ rank(f + g) ≤ rank(f) + rank(g).

Proof. (i): Of course, rank(0f) = rank(0) = 0.
(ii): Let r = rank(f). Since f ∈ Fn,mr , αf ∈ Fn,mr by the construction in Propo-

sition 3.21(i). Thus rank(αf) ≤ rank(f). The same argument applied to α−1 and αf

shows that rank(αf) ≥ rank(α−1(αf)) = rank(f).
(iii): Let r = rank(f) and s = rank(g). Then since f ∈ Fn,mr and g ∈ Fn,ms ,

f + g ∈ Fn,mr+s by the construction in Proposition 3.21(ii). The upper bound follows
immediately. For the lower bound, apply the same argument to f + g and −g, and use
that rank(g) = rank(−g) (by (ii), above), to show that

rank(f) = rank(f + g − g) ≤ rank(f + g) + rank(−g) = rank(f + g) + rank(g).

That is, rank(f)− rank(g) ≤ rank(f + g). The desired bound follows by symmetry.
3The (non-)convexity of the bounded rank function family is not to be confused with the distinct but

similarly-named property of the convexity of a loss landscape. The former (the topic of this section)
concerns convexity of a set within the vector space of functions. The latter (not discussed here) concerns
convexity of a function as a surface on the parameter space.
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Remark 4.24. Without further assumptions on the relationship between f and g, the
bounds in Proposition 4.23(iii) are optimal. More precisely, for any given f and any
given rank r ∈ N there exists g, g′ ∈ Rn,m

r such that rank(f + g) = rank(f) + rank(g) and
rank(f+g′) = |rank(f)− rank(g′)|. Such g, g′ can be implemented to share (lexicographic
absolute) incoming weight and bias vectors with as few or as many as possible of the units
of an irreducible implementation of f .

Remark 4.25. Remark 4.24 indicates that the bounded rank function families are not
closed under vector addition. This also follows as a corollary of the non-convexity results
given later in this section.

By repeated use of Proposition 4.23 one can bound the rank of an arbitrary finite
linear combination of simple neural network functions.

Corollary 4.26. Given a list of non-zero scalars α1, α2, . . . , αs ∈ R \ {0}, and a corre-
sponding list of simple neural network functions f1, f2, . . . , fs ∈ Fn,m∞ ,

rank(f1)−
s∑

i=2

rank(fi) ≤ rank

(
s∑

i=1

αifi

)
≤

s∑

i=1

rank(fi) .

Proof (by induction). Base case (s = 1): rank(f1) = rank(α1f1) by Proposition 4.23(ii).
Inductive case (s > 1): For the upper bound,

rank

(
s∑

i=1

αifi

)
≤ rank(α1f1) + rank

(
s∑

i=2

αifi

)
(Proposition 4.23(iii))

≤ rank(α1f1) +
s∑

i=2

rank(fi) (inductive hypothesis)

=
s∑

i=1

rank(fi) . (Proposition 4.23(ii))

For the lower bound,

rank(f1)−
s∑

i=2

rank(fi) ≤ rank

(
s−1∑

i=1

αifi

)
− rank(fs) (inductive hypothesis)

= rank

(
s−1∑

i=1

αifi

)
− rank(αsfs) (Proposition 4.23(ii))

≤ rank

(
s∑

i=1

αifi

)
. (Proposition 4.23(iii))

Remark 4.27. The lower bound is non-trivial only when rank(f1) >
∑s

i=2 rank(fi), since
the rank is a natural number. It might help to choose as f1 the highest-rank function.
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Finite function families are strongly locally non-convex

Bounded rank function families fail to possess vector subspace structure, because, while
they are closed under pointwise scalar multiplication, they are not closed under pointwise
vector addition: there exist f, g ∈ Fn,mr such that f + g /∈ Fn,mr .

Moreover, bounded rank function families are not closed under convex combination:
there exist f, g ∈ Fn,mr such that, for some τ ∈ (0, 1), (1−τ)f+τg /∈ Fn,mr . This property
is called non-convexity of Fn,mr .

These results are immediate corollaries of the property I prove below, in Theorem 4.28.
I call this property strong everywhere non-convexity. This property strengthens non-
convexity in two ways. First, there are pairs of functions for which the interpolating
line is entirely outside of the function family (rather than, merely, not entirely inside).
Second, parameters implementing such pairs of functions can be found inside every open
neighbourhood in parameter space (this implies the same for neighbourhoods in function
space, see Remark 4.29).

Theorem 4.28 (Strong everywhere non-convexity of bounded rank function families).
Consider a simple neural network architecture An,mh with parameter spaceWn,m

h and func-
tion family Fn,mh . If h > 0, then given a parameter w ∈ Wn,m

h and a positive uniform
radius ε ∈ R+, there exists a nearby pair of parameters u, v ∈ B̄∞(w; ε) in the closed uni-
form neighbourhood of w with radius ε, such that for all τ ∈ (0, 1), the convex combination
of the functions is outside the function family:

(1− τ)fu + τfv /∈ Fn,mh .

Proof. Since the irreducible region ofWn,m
h is dense inWn,m

h (by Corollary 3.43(i)), there
exists an irreducible parameter u in the interior of B̄∞(w; ε) (such that ‖u− w‖∞ < ε).
Writing

u = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d),

construct a second parameter

v = (a1, . . . , ah, b1, . . . , bh, c1 + γ, . . . , ch + γ, d) ∈ Wn,m
h

where

γ =
1

3
min

{
ε− ‖w − u‖∞ , min

1≤i<j≤h
‖(bi, ci)− (bj, cj)‖∞ , min

1≤i<j≤h
‖(bi, ci) + (bj, cj)‖∞

}
.

Note that γ > 0, since u is in the interior of B̄∞(w; ε) and is irreducible. In particular, γ
is chosen to imbue v with three important properties:
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1. v ∈ B̄∞(w; ε). Since γ < ε− ‖w − u‖∞,

‖w − v‖∞ ≤ ‖w − u‖∞ + ‖u− v‖∞ (triangle inequality)

= ‖w − u‖∞ + γ

< ‖w − u‖∞ + (ε− ‖w − u‖∞)

= ε.

2. v is irreducible. By Definition 3.22. For (i,ii), ai, bi 6= 0 since u is irreducible. For
(iii), the irreducibility of u also implies that for i < j, (bi, ci) 6= (bj, cj) and therefore
(bi, ci+γ) 6= (bj, cj +γ). For (iv), suppose (bi, ci+γ) = −(bj, cj +γ) for some i < j.
But the definition of γ prevents units i, j being so close, yielding a contradiction:

γ ≤ 1

3
‖(bi, ci) + (bj, cj)‖∞ =

1

3
‖(0,−2γ)‖∞ =

2

3
γ < γ.

3. For i, j ∈ {1, . . . , h}, (bi, ci) 6= ±(bj, cj + γ) (that is, the hidden unit incoming
weight and bias vectors of v have no lexicographic absolute overlap with those of
u). Suppose (bi, ci) = ±(bj, cj + γ). Again, this yields a contradiction:

γ ≤ 1

3
‖(bi, ci)∓ (bj, cj)‖∞ =

1

3
‖(0,±γ)‖∞ =

1

3
γ < γ.

Now, let τ ∈ (0, 1), and consider the convex combination function fτ = (1−τ)fu+τfv.
Following Proposition 4.23, fτ is implemented by the parameter

wτ =
(
(1− τ)a1, . . . , (1− τ)ah, τa1, . . . , τah, b1, . . . , bh, b1, . . . , bh,

c1, . . . , ch, c1 + γ, . . . , ch + γ, (1− τ)d+ τd
)
∈ Wn,m

2h .

This parameter wτ is irreducible: for (i), (1− τ), τ are non-zero by definition, and each
ai is non-zero since u is irreducible. For (ii), each bi is non-zero since u is irreducible.
For (iii,iv), each hidden unit incoming weight and bias vector has a unique lexicographic
absolute value since u and v are irreducible and by property (3) verified above. It follows
by Proposition 4.6 that (1− τ)fu + τfv /∈ Fn,mh .

Remark 4.29. Theorem 4.28 shows that parameters implementing strongly non-convex
pairs of functions can be found in every open neighbourhood in the parameter space. An
alternative condition can be formulated using neighbourhoods in the space of functions.
While it is beyond the scope of this chapter to make this function space condition precise,
Appendix A.1 reviews the necessary preliminaries to define neighbourhoods in function
space, and a consequence of Lemma A.17 in Appendix A.2 is that the parameter space
condition in Theorem 4.28 is sufficient to imply the function space condition.

69



Remark 4.30. Theorem 4.28 is related to existing work on the properties of neural
network function families by Petersen et al. (2021). Petersen et al. (2021) showed that
for multi-layer neural network architectures with a broad class of activation functions,
the corresponding function families are non-convex. Within the special case of simple
neural network architectures, Theorem 4.28 is a stronger result. Moreover, I conjecture
that this stronger property generalises to additional architectures.

Remark 4.31. The above proof shows that there are, densely distributed within the
bounded rank function family, high-rank functions with non-overlapping hidden unit
incoming weight and bias vectors. Implementing a convex combination of these functions
requires representing all of their units, which easily exceeds the rank bound. However,
for relatively low-rank functions within the function family, convex combinations may not
exceed a given rank bound. This observation takes on special relevance in the setting of
overparameterised learning, where the number of units available is very high, such that
“relatively low-rank” functions still includes some functions with significant complexity.
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Chapter 5

Degenerate Neural Network Geometry

In this chapter, I offer a thorough analysis of the geometry of simple neural networks
(neural networks with a single hidden layer of biased units and the hyperbolic tangent
activation function, cf. Section 3.2).

Crucially, rather than dismissing the degenerate (reducible) parameters, I leverage
the rank-based perspective on degeneracy from Chapter 4 to extend my analysis to this
case. In particular, I offer the following:

1. In Section 5.1, I derive a canonicalisation algorithm that works for both non-
degenerate and degenerate simple neural network parameters. This algorithm effi-
ciently determines if two simple neural network parameters (optionally from differ-
ent architectures) are functionally equivalent.

2. In Section 5.2, I characterise the full functional equivalence class of an arbitrary
degenerate simple neural network parameter as a union of simple subsets. Such
classes are much richer than those of non-degenerate parameters, and I achieve
this characterisation by tracing the execution of the canonicalisation algorithm of
Section 5.1. I study basic properties of these functional equivalence classes.

3. In Section 5.3, I show that the functional equivalence class for degenerate neural
network parameters is piecewise linear path connected. I discuss how the extent of
path connectedness depends on the degree of degeneracy (the rank) of the corre-
sponding neural network parameter.
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5.1 Canonicalisation algorithm for all parameters

As reviewed in Section 2.3, a canonicalisation algorithm maps each parameter to a canon-
ical representative parameter within its functional equivalence class (such that all func-
tionally equivalent parameters map to the same representative parameter). A canonical-
isation algorithm therefore serves as a computational test of membership within a given
functional equivalence class.

In this section, I develop a canonicalisation algorithm that works for simple neural
network parameters—both irreducible and reducible. This extends existing algorithms
that only canonicalise irreducible parameters (see, e.g., Rüger and Ossen, 1997).

The canonicalisation algorithm developed in this section combines (1) the parameter
reduction algorithm FastReduce (Algorithm 4.12, Section 4.2), which converts a pa-
rameter to a functionally equivalent and irreducible parameter in another architecture,
and (2) a canonicalisation algorithm for irreducible parameters similar to the algorithm
given by Rüger and Ossen (1997). I begin by introducing the latter.

Canonicalisation algorithm for irreducible parameters

Recall (cf. Theorem 3.39) that functionally equivalent irreducible parameters differ only
by permutation and negation transformations. Given an irreducible parameter, a canoni-
cal representative can be found by (1) lexicographically positivising each hidden unit using
a negation transformation, and then (2) lexicographically sorting the hidden units using
a permutation transformation. Algorithm 5.1 formalises this canonicalisation method.

Algorithm 5.1 (Absolute parameter sorting). Given a simple neural network architec-
ture An,mh with parameter space Wn,m

h and irreducible region I[Wn,m
h ], proceed:

1: procedure AbsoluteSort(w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ I[Wn,m
h ])

2: σ ← (signlex(b1, c1) , . . . , signlex(bh, ch)) ∈ {−1,+1}h

3: π ← permutation lexicographically sorting abslex(b1, c1) , . . . , abslex(bh, ch)

4: return Tπ(Tσ(w)) ∈ Wn,m
h

5: end procedure

The signs on line 2 are non-zero and the permutation on line 3 is unique because w is
irreducible. The permutation can be computed using a sorting algorithm (cf. Remark 3.6).

Correctness Theorem 5.2 (Algorithm 5.1). Consider a simple neural network archi-
tecture An,mh with parameter space Wn,m

h and irreducible region I[Wn,m
h ]. Given w,w′ ∈

I[Wn,m
h ], let v = AbsoluteSort(w) and v′ = AbsoluteSort(w′). Then

(i) fw = fv; and

(ii) if fw = fw′ then v = v′.
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Proof. For (i), note that v = Tπ(Tσ(w)), so fv = fw by Theorem 3.39. For (ii), sup-
pose fw = fw′ . By Theorem 3.39, there exists σ′′ ∈ {−1,+1}h and π′′ ∈ Sh such that
w′ = Tσ′′(Tπ′′(w)). Of course, Algorithm 5.1 is designed to be invariant to just such
transformations. To verify this, consider executing the algorithm on w and w′, denoting
with x′ each variable x in the latter execution:

1. First, the computation of the sign vectors on line 2 proceeds:

σ = (signlex(b1, c1) , . . . , signlex(bh, ch))

σ′ = (signlex(b′1, c
′
1) , . . . , signlex(b′h, c

′
h))

=
(
signlex

(
σ′′1bπ′′(1), σ

′′
1cπ′′(1)

)
, . . . , signlex

(
σ′′hbπ′′(h), σ

′′
hcπ′′(h)

))

=
(
σ′′1σπ′′(1), . . . , σ

′′
hσπ′′(h)

)
.

It follows that

Tσ′(w
′) = (σ′1a

′
1, . . . , σ

′
ha
′
h, σ

′
1b
′
1, . . . , σ

′
hb
′
h, σ

′
1c
′
1, . . . , σ

′
hc
′
h, d
′)

= (σ′′1σπ′′(1)σ
′′
1aπ′′(1), . . . , σ

′′
hσπ′′(h)σ

′′
haπ′′(h), (σ′i = σ′′i σπ′′(i),

σ′′1σπ′′(1)σ
′′
1bπ′′(1), . . . , σ

′′
hσπ′′(h)σ

′′
hbπ′′(h), a′i = σ′′i aπ′′(i),

σ′′1σπ′′(1)σ
′′
1cπ′′(1), . . . , σ

′′
hσπ′′(h)σ

′′
hcπ′′(h), d) likewise for b′i, c

′
i,

= (σπ′′(1)aπ′′(1), . . . , σπ′′(h)aπ′′(h), and also, d′ = d)

σπ′′(1)bπ′′(1), . . . , σπ′′(h)bπ′′(h),

σπ′′(1)cπ′′(1), . . . , σπ′′(h)cπ′′(h), d) (σ′′i σ
′′
i = 1)

= Tπ′′(Tσ(w)). (†)

2. Next, denote the lists sorted on line 3 as L (and L′). Then

L = abslex(b1, c1) , . . . , abslex(bh, ch) , and

L′ = abslex(b′1, c
′
1) , . . . , abslex(b′h, c

′
h)

= abslex

(
σ′′1bπ′′(1), σ

′′
1cπ′′(1)

)
, . . . , abslex

(
σ′′hbπ′′(h), σ

′′
hcπ′′(h)

)

= abslex

(
bπ′′(1), cπ′′(1)

)
, . . . , abslex

(
bπ′′(h), cπ′′(h)

)

It follows that the permutations π sorting L and π′ sorting L′ are such that

π′ = π · (π′′)−1 (‡)

3. By (†) and (‡), v′ = Tπ′(Tσ′(w
′)) = Tπ(T−1

π′′ (Tπ′′(Tσ(w)))) = Tπ(Tσ(w)) = v.

Remark 5.3. Algorithm 5.1 is similar to the algorithm sketched by Rüger and Ossen
(1997) for canonicalising neural network parameters with non-zero biases.
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Remark 5.4. Computing the sign vector takes O(nh) time, computing the permutation
takes O(nh log(h)) time, and executing the transformations takes O(nh + mh) time; so
the total asymptotic runtime of Algorithm 5.1 is O(nh log(h) + mh) (all assuming a
standard model of computation and bounded-precision parameters, cf. Section 4.2).

Remark 5.5. Algorithm 5.1 can be applied to reducible parameters. However, Cor-
rectness Theorem 5.2(ii) does not generalise in this case: if two functionally equivalent
reducible parameters are not related by permutation and negation transformations then
the algorithm will not typically produce the same representative for these parameters.

Canonicalisation across architectures

Algorithm 5.1 only works for irreducible parameters, not reducible parameters. But
Algorithm 4.12 can convert reducible parameters into irreducible parameters (in an ar-
chitecture with fewer hidden units). I combine these algorithms into a canonicalisation
algorithm as follows.

Algorithm 5.6 (Cross-architecture parameter canonicalisation). Given a simple neural
network architecture An,mh with parameter space Wn,m

h , proceed:

1: procedure XCanonicalise(w ∈ Wn,m
h ) . read “cross canonicalise”

2: u← FastReduce(w) ∈ Wn,m
r . Algorithm 4.12

3: v ← AbsoluteSort(u) ∈ Wn,m
r . Algorithm 5.1

4: return v ∈ Wn,m
r

5: end procedure

The output dimension of this algorithm depends on the input: r = rank(w) ≤ h.

Correctness Theorem 5.7 (Algorithm 5.6). Consider two simple neural network archi-
tectures An,mh ,An,mh′ with parameter spacesWn,m

h ,Wn,m
h′ . Given w ∈ Wn,m

h and w′ ∈ Wn,m
h′ ,

let v = XCanonicalise(w) and v′ = XCanonicalise(w′). Then

(i) fw = fv; and

(ii) if fw = fw′ then v = v′.

Proof. For (i), fw = fu by Correctness Theorem 4.13, and fu = fv by Correctness The-
orem 5.2(i). For (ii), suppose fw = fw′ . While u and u′ (line 2 given input w and w′

respectively) are not necessarily equal, they are functionally equivalent irreducible param-
eters inWn,m

rank(w) =Wn,m
rank(w′) (this follows by Correctness Theorem 4.13 and Remark 4.4).

Therefore v = v′ by Correctness Theorem 5.2(ii).

Remark 5.8. The runtime of Algorithm 5.6 is O(nh log(h) + mh) by Remarks 5.4
and 4.14.
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Canonicalisation within one architecture

Algorithm 5.9 is a powerful canonicalisation algorithm that finds canonical representative
parameters for all functionally equivalent parameters across all simple neural network
architectures. The representative parameter will not be from the same parameter space
as the input parameter unless the input is already irreducible. To complete this section
I offer the following simple modification to the canonicalisation algorithm that finds
representatives within a given parameter space.

Algorithm 5.9 (Within-architecture parameter canonicalisation). Given a simple neural
network architecture An,mh with parameter space Wn,m

h , proceed:

1: procedure Canonicalise(w ∈ Wn,m
h )

2: . Find representative in Wn,m
r using Algorithm 5.6 /

3: (a1, . . . , ar, b1, . . . , br, c1, . . . , cr, d)← XCanonicalise(w) ∈ Wn,m
r

4: . Embed into Wn,m
h by adding h− r blank units /

5: 0a, 0b, 0c ← 0 ∈ Rm, 0 ∈ Rn, 0 ∈ R
6: return (a1, . . . , ar, 0a, . . . , 0a, b1, . . . , br, 0b, . . . , 0b, c1, . . . , cr, 0c, . . . , 0c, d) ∈ Wn,m

h

7: end procedure

Correctness Theorem 5.10 (Algorithm 5.9). Consider a simple neural network archi-
tecture An,mh with parameter spacesWn,m

h . Given w,w′ ∈ Wn,m
h , let v = Canonicalise(w)

and v′ = Canonicalise(w′). Then

(i) fw = fv; and

(ii) if fw = fw′ then v = v′.

Proof. For (i), the canonicalisation step (line 3) preserves functional equivalence by Cor-
rectness Theorem 5.7(i), and the embedding step (lines 5 and 6) clearly preserves func-
tional equivalence. For (ii), it follows from Correctness Theorem 5.7(ii) that after line 3
the execution on w and w′ proceeds identically.

Remark 5.11. Computing the embedded parameter takes only O(nh+mh) time, so the
total runtime complexity of Algorithm 5.9 remains O(nh log(h) +mh) (cf. Remark 5.8).
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5.2 Functional equivalence classes for all parameters

Given an irreducible simple neural network parameter, the functional equivalence class
has a simple characterisation in terms of the permutation and negation transformations,
as reviewed in Section 3.3. Based on this characterisation, the canonicalisation algorithm
for irreducible parameters (Algorithm 5.1) was derived.

To characterise the much richer functional equivalence class of a reducible parameter,
I take an essentially reversed approach. Having established a canonicalisation algorithm
for all parameters in the previous section (Algorithm 5.9), I work in this section to invert
this algorithm as a means of characterising the functional equivalence class (noting that
the canonicalisation algorithm computes the same output for all functionally equivalent
parameters, by design). After deriving a characterisation of general functional equivalence
classes, I document some of their basic properties.

Characterising the functional equivalence class

While the functional equivalence class for a reducible neural network parameter is, in
general, a highly complicated subset of the parameter space, it is possible to characterise
the subset as a union of simple sets.

Much like for the characterisation of the bounded rank regions in Section 4.3, the
key to a simple characterisation is an algorithm. What an entire functional equivalence
class has in common is the corresponding output from a canonicalisation algorithm. In
particular, there are only so many ways for a parameter’s hidden units to be merged,
eliminated, negated, and permuted in the course of Algorithm 5.6. Enumerating all such
possible canonicalisation traces leads to an effective characterisation of the functional
equivalence class, as follows.

Definition 5.12 (Canonicalisation trace). Given r, h ∈ N with r ≤ h, a canonicalisation
trace of order r on h units is a tuple (σ, τ) where

• σ ∈ {−1,+1}h is a sign vector (cf. Definition 3.34, interpreted as tracking unit
negations throughout canonicalisation); and

• τ : {1, . . . , h} → {0, 1, . . . , h} is a function with range including {1, . . . , r} (inter-
preted as tracking the merging, elimination, and permutation of units throughout
canonicalisation—τ(i) = 0 for units eliminated for having zero incoming weight
incorporated into output unit biases, τ(i) > r for units eliminated as part of a
group with total outgoing weight zero, or otherwise τ(i) = j for units partially
implementing unit j of the canonicalised network).

Moreover, denote by ΞC(h, r) the set of all canonicalisation traces of order r on h units.
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Theorem 5.13 (Characterisation of functional equivalence class). Consider the simple
neural network architecture An,mh with parameter space Wn,m

h = R(n+m+1)h+m. Given a
parameter w ∈ Wn,m

h , let r = rank(w), and let (α1, . . . , αr, β1, . . . , βr, γ1, . . . , γr, δ) =

XCanonicalise(w) ∈ Wn,m
r (Algorithm 5.6). Then the functional equivalence class

F[w] ⊂ Wn,m
h is a union of subsets

F[w] =
⋃

ξ∈ΞC(h,r)

Sξ

where ΞC(h, r) denotes all canonicalisation traces of order r on h units and

Sσ,τ = Xδ
τ−1[0] ∩

(
r⋂

i=1

Y αi,βi,γi
σ,τ−1[i]

)
∩
(

h⋂

i=r+1

Zσ,τ−1[i]

)
;

Xδ
I =

{
(a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m

h

∣∣∣∣∣
∀i ∈ I, bi = 0 and

d+
∑

i∈I ai tanh(ci) = δ

}
;

Y α,β,γ
σ,I =

{
(a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m

h

∣∣∣∣∣
∀i ∈ I, σi · (bi, ci) = (β, γ)

and
∑

i∈I σiai = α

}
; and

Zσ,I =

{
(a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m

h

∣∣∣∣∣
∀i, j ∈ I, σi·(bi, ci) = σj·(bj, cj)

and
∑

i∈I σiai = 0

}
.

Proof. (
⋃
ξ Sξ ⊂ F[w]): Let u = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ ⋃ξ Sξ. Then there

is some canonicalisation trace (σ, τ) ∈ ΞC(h, r) such that

u ∈ Sσ,τ = Xδ
τ−1[0] ∩

(
r⋂

i=1

Y αi,βi,γi
σ,τ−1[i]

)
∩
(

h⋂

i=r+1

Zσ,τ−1[i]

)
.

Writing v = XCanonicalise(w), it remains to show that fu = fv, since fv = fw by
Correctness Theorem 5.7. Let x ∈ Rn. Decompose

fu(x) = d+
h∑

i=1

ai tanh(bix+ ci)

= d+
∑

i∈τ−1[0]

ai tanh(bix+ ci)

︸ ︷︷ ︸
(1)

+
r∑

j=1

∑

i∈τ−1[j]

ai tanh(bix+ ci)

︸ ︷︷ ︸
(2j)

+
h∑

j=r+1

∑

i∈τ−1[j]

ai tanh(bix+ ci)

︸ ︷︷ ︸
(3j)

Then (1) equals the constant term of fv, the (2j) equal the hidden units of fv, and the
(3j) vanish, as can be verified:
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1. Since u ∈ Xδ
τ−1[0], (1) = d+

∑

i∈τ−1[0]

ai tanh(bix+ ci) = d+
∑

i∈τ−1[0]

ai tanh(ci) = δ.

2. Since u ∈ Y αj ,βj ,γj
σ,τ−1[j] ,

(2j) =
∑

i∈τ−1[j]

ai tanh(bix+ ci)

=
∑

i∈τ−1[j]

ai tanh(σiβjx+ σiγj) (σi · (bi, ci) = (βj, γj))

=
∑

i∈τ−1[j]

σiai tanh(βjx+ γj) (tanh(±z) = ± tanh(z))

= αj tanh(βjx+ γj). (
∑

i∈τ−1[j] σiai = αj)

3. Since u ∈ Zσ,τ−1[j],

(3j) =
∑

i∈τ−1[j]

ai tanh(bix+ ci)

=
∑

i∈τ−1[j]

σiai tanh(σibix+ σici) (tanh(z) = ± tanh(±z))

=
∑

i∈τ−1[j]

σiai · (a constant in i) (σibi = σjbj, σici = σjcj)

= 0. (
∑

i∈τ−1[j] σiai = 0)

Thus fu(x) = fv(x), and therefore u ∈ F[w].
(F[w] ⊂ ⋃ξ Sξ): Suppose w

′ ∈ F[w], so XCanonicalise(w) = XCanonicalise(w′)

by Correctness Theorem 5.7. Construct a canonicalisation trace ξ ∈ ΞC(h, r) from the
execution of the canonicalisation algorithm on w′, and show that w′ ∈ Sξ. Proceed to
construct the trace ξ = (σ, τ) as follows:

1. From the execution of Algorithm 4.12 (FastReduce) on w′, identify the units that
have zero incoming weight and are excluded from I in the first pass, and have τ
map these units to 0:

∀i /∈ I, τ(i) = 0.

Note that it follows immediately that w′ ∈ Xδ
τ−1[0] and this is not jeopardised by

the remaining steps.

2. Construct a sign vector σ based on the lexicographic sign of the incoming weight
vector of each unit. Use arbitrary signs for the units in τ−1[0].

3. From the second pass, for i = 1, . . . , k have τ map each of the units in partition
group Πi to i. It follows that w′ ∈ Y α′i,β

′
i,γ
′
i

σ,τ−1[i] , where α
′
i, β′i, and γ′i denote the variables

αi, βi, and γi in the execution of Algorithm 4.12 on w′ (cf. theorem statement).
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4. From the third pass, remap τ so that those partition groups previously mapping
to i such that α′i = 0 map instead onto {r + 1, . . . , k} (and remap the remaining
groups onto {1, . . . , r}, see also the next step). It follows that for i = r + 1, . . . , k,
w′ ∈ Y 0,β′i,γ

′
i

σ,τ−1[i] ⊂ Zσ,τ−1[i].

5. Also from the third pass, remap the r partition groups whose units remain instead
onto {1, . . . , r} in order of increasing lexicographic absolute value of the incoming
weight and bias vector. Noting that the sign vector computed in Algorithm 5.1
(AbsoluteSort) is (1, . . . , 1) (since Algorithm 4.12 already normalises units to
have lexicographically positive incoming weight and bias vectors), and the permu-
tation is computed exactly to bring the units into increasing order, it now holds
that for i = 1, . . . , r, w′ ∈ Y αi,βi,γi

σ,τ−1[i] .

By construction, ξ = (σ, τ) is a canonicalisation trace of order r, and w′ ∈ Sσ,τ . Therefore,
w′ ∈ ⋃ξ Sξ.

Remark 5.14. It is instructive to consider how the above result contains Theorem 3.39
as a special case. If w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m

h is irreducible then
rank(w) = h (Proposition 4.6). So the union is over ΞC(h, h), canonicalisation traces of
order h on h units. By Definition 5.12, such canonicalisation traces comprise a sign vector
σ ∈ {−1,+1}h and a map τ : {1, . . . , h} → {0, . . . , h} with range including {1, . . . , h}.
The latter constraint implies that τ is effectively a permutation of {1, . . . , h}, so write
τ = π ∈ Sh. The subset corresponding to this canonicalisation trace is the intersection
of Xd

∅ (parameters with output bias d) and, for each i = 1, . . . , h, Y ai,bi,ci
σ,{π−1(i)} (parameters

for which unit j = π−1(i) has outgoing weight σjai, incoming weight σjbi, and bias σjci).
Such constraints uniquely identify the parameter Tσ(Tπ(w)).

Remark 5.15. Another special case of this result arises when rank(w) = h−1. There are,
not counting sign vectors and permutations, essentially three possible canonicalisation
traces of order h−1 on h units, corresponding to the different ways of mapping the “spare”
unit to {0, . . . , h} after the necessary range {1, . . . , h− 1} has been covered: (1) to map
the spare unit to one of 1, . . . , h− 1 again; (2) to map the spare unit to 0; or (3) to map
the spare unit to h. From the perspective of embedding the reduced parameter into the
original parameter space by adding a redundant unit, these three canonicalisation traces
correspond to the three embedding methods catalogued by Fukumizu and Amari (2000)
and Fukumizu et al. (2019), namely, (1) to split one of the existing units in two; (2) to
introduce a new constant unit with zero incoming weight; or, (3) to introduce a new unit
with zero outgoing weights.

Remark 5.16. Şimşek et al. (2021) have catalogued methods of adding multiple hidden
units. Though they study a setting with simpler reducibility conditions it is instructive to
consider the similarities between Theorem 5.13 and Şimşek et al. (2021, Defs. 3.2 & 3.3).
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Properties of the functional equivalence class

While it is difficult to compute functional equivalence classes for low-rank parameters in
high-dimensional parameter spaces, the characterisation in Theorem 5.13 provides some
somewhat-scalable intuition. From this result several basic properties of the functional
equivalence class quickly follow.

First, the functional equivalence class for a reducible parameter is a closed subset
of the reducible region. It therefore shares several properties with the reducible region
(Section 3.3) and bounded rank regions (Section 4.3). Namely, it has open interior, its
complement is dense, and it has measure zero (see proof of Corollary 4.22).

Corollary 5.17. Consider the simple neural network architecture An,mh with parame-
ter space Wn,m

h = R(n+m+1)h+m. Given a reducible parameter w ∈ R[Wn,m
h ] (that is,

rank(w) < h), the functional equivalence class F[w] ⊂ Wn,m
h is a closed subset of

R[Wn,m
h ].

Proof. That F[w] is a subset of R[Wn,m
h ] follows by Remark 3.28. That F[w] is closed

follows as it is a finite union of closed subsets of Wn,m
h (Theorem 5.13).

Notably, the functional equivalence class for a reducible parameter is not algebraic,
unlike the bounded rank regions or the reducible region.

Remark 5.18. The functional equivalence class for a reducible parameter is not real affine
algebraic. This is chiefly due to the Xδ

I components in the characterisation, which are
always present for reducible parameters and crucially involve a non-polynomial (analytic)
constraint

d+
∑

i∈I
ai tanh(ci) = δ.

Note that this is the only non-polynomial constraint, and the set can be made algebraic
through an analytic reparameterisation of the architecture that replaces the hidden unit
bias parameters ci with c′i = tanh(ci) ∈ (0, 1). Then the analytic constraint above
becomes polynomial:

d+
∑

i∈I
aic
′
i = δ.

The other constraints involving ci remain algebraic since tanh is odd and monotonic:

σici = γ ⇔ tanh(σici) = tanh(γ) ⇔ σic
′
i = γ′ (in Y α,β,γ

σ,I )

σici = σjcj ⇔ tanh(σici) = tanh(σjcj) ⇔ σic
′
i = σic

′
j. (in Zσ,I)

This reparameterisation is an important precursor to forming an understanding of the
functional equivalence class from the perspective of algebraic geometry (cf. Wong, 2022).
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5.3 Connectivity of the functional equivalence class

In this section, I establish one further property of the functional equivalence class of
reducible parameters: all points within such a functional equivalence class are connected
by a piecewise linear path comprising parameters in the functional equivalence class.
This emphasises the contrast between the functional equivalence class of reducible and
irreducible parameters (the latter being discrete and disconnected).

Piecewise linear path connectivity

I begin by formally defining the property of piecewise linear path connectivity.

Definition 5.19 (Piecewise linear path). Given a subset W ⊂ Rp, a piecewise linear
path in W is a continuous function ρ : [0, 1] → W comprising a finite number of linear
segments. The point ρ(0) ∈W is the starting point of the path and the point ρ(1) ∈W

is the ending point of the path. The number of (maximal) segments in the path is the
length of the path.

Definition 5.20 (Piecewise linear path connectivity relation). Given a subset W ⊂ Rp,
define a relation ! on W, called piecewise linear path connectivity in W, such that for
w,w′ ∈W,

w ! w′ ⇔ ∃ρ : [0, 1]→W, a piecewise linear path in W with
starting point ρ(0) = w and ending point ρ(1) = w′.

Proposition 5.21. Given a subset W ⊂ Rp, the relation of piecewise linear path con-
nectivity in W is an equivalence relation.

Proof. (Reflexivity): For w ∈W, w ! w by the “empty” path ρ(t) = w.
(Symmetry): For u, v ∈W, if u! v via the path ρu→v, then v ! u via the “reverse”

path ρv→u(t) = ρu→v(1− t).
(Transitivity): For u, v, w ∈ W, if u ! v via the path ρu→v, and v ! w via the

path ρv→w, then u! w via the “catenated” path

ρu→w(t) =




ρu→v(t/2) (t ≤ 1/2)

ρv→w(t/2− 1/2) (t > 1/2).

Note that the length of the catenated path is the sum of the lengths of these two paths,
or, if the connected segments are co-linear, the sum less by one. Either way, it is finite
as required.

Definition 5.22 (Piecewise linear path connectivity of a set). Consider a subsetW ⊂ Rp.
W is a piecewise linear path connected set if, for every pair w,w′ ∈W, w ! w′.
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Connectivity of the functional equivalence class

The main result in this section is that for reducible neural network parameters, the
functional equivalence class is a piecewise linear path connected set.1 To prove this result
I need the following definition.

Definition 5.23 (Pseudo-reduced simple neural network parameter). Consider the sim-
ple neural network architectureAn,mh with parameter spaceWn,m

h . A parameter w ∈ Wn,m
h

is pseudo-reduced if, for all but rank(w) of its hidden units, the incoming weight vector,
outgoing weight vector, and bias are zero (call such units blank).

Remark 5.24. A pseudo-reduced parameter can be understood as the result of carrying
out a reduction algorithm such as Algorithm 4.9 (SlowReduce), modified such that
instead of removing a unit from the network in each iteration, it retains the unit but sets
the unit’s weights and bias to zero. (The unit should be marked as “pseudo-removed”
and excluded from future iterations, so that the algorithm will still terminate.)

Pseudo-reduced parameters play a key role in the proof of the following main result,
which proceeds by constructing a path between any two functionally equivalent param-
eters via their pseudo-reduced forms as computed by the modified algorithm outlined
above. The proof is supported by two lemmas, given in the remainder of this section,
that construct piecewise linear paths connecting each parameter to its pseudo-reduced
form, and connecting two such pseudo-reduced parameters.

Theorem 5.25 (Piecewise linear path connectivity of reducible functional equivalence
class). Consider the simple neural network architecture An,mh with parameter space Wn,m

h .
Given a reducible parameter w ∈ R[Wn,m

h ], the functional equivalence class F[w] is piece-
wise linear path connected.

Proof. Let u, v ∈ F[w]. Let u′, v′ be the pseudo-reduced versions of u, v, computed
via Algorithm 4.9 (SlowReduce) modified as described in Remark 5.24. Then, by
Lemma 5.28 (below), u! u′ and v ! v′. Moreover, by Lemma 5.30 (below), u′ ! v′.
The theorem follows since ! is an equivalence relation (Proposition 5.21).

Remark 5.26. If h > 0, an irreducible functional equivalence class is disconnected.

Remark 5.27. There is a sense in which the functional equivalence class of a parameter
with low rank is “more” connected than the functional equivalence class of a parameter
with high rank, in terms of being connected with piecewise linear paths with shorter length
(number of maximal linear segments). The constructions given in Lemmas 5.28 and 5.30
show the existence of paths, without attempting to economise on length. Remarks 5.29
and 5.31 to 5.33 discuss how shorter paths can be constructed for low-rank parameters.

1Shortly before submission, I discovered that Şimşek et al. (2021) published a similar path construc-
tion, having approached the problem from a dual perspective of embedding irreducible parameters into
higher parameter spaces (cf. Section 2.5), and in a setting with somewhat simpler reducibility conditions.
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Piecewise linear connectivity and pseudo-reduction

I show how a piecewise linear path of functionally equivalent parameters can be con-
structed between a parameter and its pseudo-reduced form.

Lemma 5.28. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h . Given a parameter w ∈ Wn,m
h , let w′ be computed by the algorithm described

in Remark 5.24. Then in the functional equivalence class F[w],

w ! w′.

Proof. Let r = rank(w). Then the modified reduction algorithm runs for h−r iterations,
producing a chain of intermediate functionally equivalent parameters w(0), w(1), . . . , w(h−r) ∈
Wn,m

h with w = w(0) and w(h−r) = w′. For iteration i = 1, . . . , h− r, write w(i−1) =

(a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) and w(i) = (a′1, . . . , a
′
h, b
′
1, . . . , b

′
h, c
′
1, . . . , c

′
h, d
′), and con-

struct a piecewise linear path connecting w(i−1) ! w(i) as follows.

1. If hidden unit j is to be pseudo-removed under reducibility condition (i), then
aj = a′j = 0 and b′j = c′j = 0. Construct a direct path to w(i).

2. If hidden unit j is to be pseudo-removed under reducibility condition (ii), then
bj = b′j = 0, a′j = c′j = 0, and d′ = d + aj tanh(cj). Construct a two-stage path.
First, proceed directly to the point with output bias d′ and where unit j has zero
outgoing weight, holding unit j’s bias constant. From there, proceed as in case (1).

3. If hidden unit k is to be pseudo-merged into hidden unit j under reducibility con-
dition (iii), then (b′j, c

′
j) = (bj, cj) = (bk, ck), a′j = aj + ak, and a′k = b′k = c′k = 0.

Construct a two-stage path. First, proceed directly to the point where unit j has
outgoing weight a′j and unit k has zero outgoing weight, holding the incoming weight
and bias vectors constant. From there, proceed as in case (1).

4. If hidden unit k is to be pseudo-merged into hidden unit j under reducibility con-
dition (iv), then (b′j, c

′
j) = (bj, cj) = −(bk, ck), a′j = aj − ak, and a′k = b′k = c′k = 0.

Proceed essentially as in case (3).

Each of these paths remains in the functional equivalence class by construction. Thus,
w = w(0) ! w(1) ! · · ·! w(h−r) = w′.

Remark 5.29. The constructed path can be compressed into a path with just two seg-
ments. First, execute in parallel all of the shifts of outgoing weight to the eventual units
they end up at, and from constant units to the output unit bias vector. Then, for all
units with zero outgoing weight, send the incoming weight and bias vectors to zero in a
single second segment.
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Piecewise linear connectivity and absolute sorting

I show how a piecewise linear path of functionally equivalent parameters can be con-
structed between two functionally equivalent pseudo-reduced parameters.

Lemma 5.30. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h . Consider two reducible, functionally equivalent, pseudo-reduced parameters
w,w′ ∈ R[Wn,m

h ]. Then in the functional equivalence class F[w],

w ! w′.

Proof. First, observe that any two functionally equivalent, pseudo-reduced parameters are
related by a permutation and negation transformation. This follows from Theorem 3.39,
because pseudo-reduced parameters are just irreducible parameters with additional blank
units: a permutation transformation can take care of the positioning of the blank units
within the network, and the remaining differences are exactly those of the corresponding
irreducible parameters. Therefore, for some permutation π ∈ Sh and sign vector σ ∈
{−1,+1}h, write w′ = Tσ(Tπ(w)). To show that w ! w′, consider the following cases:

1. If σ = (1, . . . , 1) and π is a transposition between i and j, where i or j is a blank
unit: without loss of generality assume j is blank, and construct a path with three
linear segments as follows.

(a) Interpolate the incoming weight and bias vector of the blank unit j to match
that of i, keeping the outgoing weight zero.

(b) Shift the outgoing weight from unit i to unit j.

(c) Interpolate the incoming weight and bias vector of unit i to zero, keeping the
outgoing weight zero.

2. If σ = (1, . . . , 1) and π is a general transposition between i and j (neither of which
is a blank unit): since w is reducible and pseudo-reduced, there must be a blank
unit k. Using thrice the three-segment construction in case (1), proceed to swap
units i and j via k as follows.

(a) Transpose unit j into blank unit k.

(b) Transpose unit i into (now) blank unit j.

(c) Transpose unit k (containing original unit j) into (now) blank unit i.

3. If π = id and σ is an individual negation having exactly one negative component,
σi = −1: if i is blank, use an empty path. If not, then since w is reducible and
pseudo-reduced, there is a blank unit j. Construct a path with three segments as
follows.
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(a) Interpolate the incoming weight and bias vector of the blank unit j to be
negated with respect to that of i, keeping the outgoing weight zero.

(b) Shift (while negating) the outgoing weight from unit i to unit j.

(c) Interpolate the incoming weight and bias vector of unit i to zero, keeping the
outgoing weight zero.

This connects w to a parameter with unit i negated, but also transposed with blank
unit j. From here use the three-segment construction from case (1) to reach w′.

The general case follows from these special cases, since π can be written as a product of
transpositions, and σ as a product of individual negations (each of which preserves the
pseudo-reduced property of the parameter).

Remark 5.31. Between each application of the case (1) construction it is possible to
reduce the number of segments by “cutting corners,” avoiding the intermediate point
restoring the blank unit.

Remark 5.32. The length of the path otherwise depends on the number of individual
negations and transpositions separating the two pseudo-reduced parameters. However, if
there are multiple blank units (that is, for low-rank parameters), then it is possible to
compress the path further by transposing and negating multiple units in parallel.

Remark 5.32 introduces an interesting relationship between the sign vector, the per-
mutation, the rank (determining the number of blank units), and the length of the shortest
piecewise linear path implementing the corresponding transformation. If blank units are
regarded as “space” and linear segments as “time” this relationship is reminiscent of the
kind of problems studied in computational complexity theory. Aside from the below re-
mark, which can be seen as a single point on the “time–space trade-off” curve, I leave it
to future work to more thoroughly explore this topic.

Remark 5.33. If at least half of the units are blank (rank(w) ≤ h/2), then any two
equivalent pseudo-reduced parameters can be connected with a path of just five linear
segments. First, with the construction in (1) from the above proof, exchange (at once) all
units of w that are occupying some non-blank unit of w′ with some units that are blank
in both parameters. Then, at once exchange all units into the appropriate positions in
w′ according to the transformation, using the constructions in (1) or the first part of (3)
as appropriate. The resulting six-segment path can be cut to five using Remark 5.31.
Note also that combined with Remarks 5.29 and 5.31, this construction implies a path of
length seven between any two functionally equivalent parameters with rank at most h/2.
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Chapter 6

Degenerate Neighbourhoods
in Parameter Space

Chapters 4 and 5 investigated (exact) degeneracy in simple neural networks, and its
implications for (exact) functional equivalence. However, degenerate neural networks
also have important implications for their neighbourhoods (cf. Section 2.5).

In this chapter, I study a measure of approximate degeneracy for simple neural net-
work parameters based on proximity to degenerate regions. In Section 6.1, I formally
define the parametric1approximate2 rank—the rank of the most degenerate neural net-
work parameter within a uniform neighbourhood. I study some of its basic properties,
and derive a polynomial-time greedy algorithm computing an upper bound.

In the remainder of this chapter, I show that tightly bounding the parametric approx-
imate rank (or, detecting proximity to bounded rank regions) is NP-complete.

1. The reduction proceeds via a novel combinatorial problem, called uniform point par-
tition, which I explore in detail from several equivalent perspectives in Section 6.2.

2. In Section 6.3, I show that uniform point partition is NP-complete, by reduction
from the restricted variant of Boolean satisfiability introduced in Section 3.4.

3. In Section 6.4, I show that a decision problem involving the parametric approximate
rank is NP-complete, by reduction from uniform point partition.

This shows that, unless P = NP , there is no polynomial-time algorithm that computes
the parametric approximate rank, underscoring the (computational) complexity of the
neighbourhoods of degenerate regions of parameter space.

1I consider proximity in parameter space as the most relevant for learning algorithms that operate by
local search. In Appendix A, I define a second measure of approximate degeneracy based on proximity
in function space, and investigate the relationship between these measures. As for the use of uniform
distance, this metric is computationally convenient (since it somewhat decouples dimensions).

2The “approximation” in this notion is of the parameter, as opposed to the rank (compare, “measure
of approximate degeneracy,” above, with “approximate measure of degeneracy”). There is little need to
approximate the rank itself, which can be readily computed (Section 4.2).
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6.1 Parametric approximate rank

In this section, I study the following measure of approximate degeneracy for simple neural
network parameters based on (uniform) proximity to low-rank parameters.

Definition 6.1 (Parametric approximate rank). Consider the simple neural network
architecture An,mh with parameter space Wn,m

h . Given a neural network parameter w ∈
Wn,m

h and a positive radius ε ∈ R+, define the parametric approximate rank of w, denoted
prankε(w), as the rank of the lowest-rank parameter within a closed uniform neighbour-
hood of w with radius ε. That is,

prankε(w) = min
{

rank(u) ∈ N
∣∣u ∈ B̄∞(w; ε)

}
.

Properties of parametric approximate rank

Proposition 6.2 provides some basic consequences of the definition, and Proposition 6.3
clarifies the role of the uniform radius.

Proposition 6.2. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h . Let w ∈ Wn,m
h and ε ∈ R+.

(i) For all u ∈ B̄∞(w; ε), prankε(w) ≤ rank(u).

(ii) If prankε(w) = r, then ∃u ∈ B̄∞(w; ε) with rank(u) = r.

(iii) prankε(w) ≤ rank(w).

(iv) prankε(w) ≤ r if and only if ∃u ∈ Br[Wn,m
h ] with ‖u− w‖∞ ≤ ε.

Proof. (i) and (ii) by definition (as a minimum). (iii) by (i). (iv) by (i) and (ii).

Proposition 6.3. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h . Fix w ∈ Wn,m
h and consider prankε(w) as a function of ε. Then,

(i) prankε(w) is antitone in ε: if ε ≥ ε′ then prankε(w) ≤ prankε′(w); and

(ii) prankε(w) is right-continuous in ε: limδ→0+ prankε+δ(w) = prankε(w).

Proof. For (i), put u ∈ B̄∞(w; ε′) such that rank(u) = prankε′(w). Then u ∈ B̄∞(w; ε),
so prankε′(w) = rank(u) ≥ prankε(w). Then for (ii), the limit exists by the monotone
convergence theorem (and Proposition 6.2(iii)). Proceed to bound prankε(w) above and
below by r = limδ→0+ prankε+δ(w). For the lower bound, for δ ∈ R+, prankε+δ(w) ≤
prankε(w) by (i), so r = limδ→0+ prankε+δ(w) ≤ prankε(w).

For the upper bound, since the parametric approximate rank is natural, the limit
is achieved for some positive δ. That is, ∃∆ ∈ R+ such that prankε+∆(w) = r. Then
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for k = 1, 2, . . . put uk ∈ B̄∞(w; ε+ ∆/k) with rank(uk) = r. Since B̄∞(w; ε+ ∆)

is compact the sequence u1, u2, . . . has an accumulation point—call it u. Now, since
u1, u2, . . . ∈ Br[Wn,m

h ] (parameters of rank at most r, Definition 4.18), a closed set
(Corollary 4.22), the accumulation point u ∈ Br[Wn,m

h ]. Thus, rank(u) ≤ r. Finally,
u ∈ ⋂∞k=1 B̄∞(w; ε+ ∆/k) = B̄∞(w; ε), so r ≥ rank(u) ≥ prankε(w).

Remark 6.4. A similar proof implies that prankε(w) achieves its upper bound rank(w)

for small enough ε. The lower bound 0 is also achieved, for ε ≥ ‖w‖∞ = ‖w − 0‖∞.

Parametric instability of parametric approximate rank

Unlike for rank, two parameters with the same function may not share the same para-
metric approximate rank—consider Example 6.5.3 However, a limited form of parameter
independence holds as shown by Proposition 6.6 and Corollary 6.7.

Example 6.5. Let ε ∈ R+. Consider the neural network parameters w,w′ ∈ W1,1
2 with

w = (2ε, 0, 2ε, 0, 0, 0, 0) and w′ = (2ε, 0, 2ε, 5ε, 0, 0, 0). Then

prankε(w) = rank(ε,−ε, ε, ε, 0, 0, 0) = 0 6= 1 = prankε(w
′),

but, for x ∈ R, fw(x) = 2ε tanh(2εx)+0 tanh(0x) = 2ε tanh(2εx)+0 tanh(5εx) = fw′(x).

Proposition 6.6. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h ; a permutation π ∈ Sh; a sign vector σ ∈ {−1,+1}h; and the corresponding
transformations Tπ and Tσ (cf. Definitions 3.32 and 3.35). For w ∈ Wn,m

h , ε ∈ R+,

prankε(w) = prankε(Tσ(Tπ(w))).

Proof. Let w′ = Tσ(Tπ(w)). Let u ∈ B̄∞(w; ε) with rank(u) = prankε(w), and let
u′ = Tσ(Tπ(u)). Then u′ ∈ B̄∞(w′; ε) since Tπ and Tσ are isometries (Proposition 3.37):

‖u′ − w′‖∞ = ‖Tσ(Tπ(u))− Tσ(Tπ(w))‖∞ = ‖u− w‖∞ ≤ ε.

It follows that prankε(w) = rank(u) = rank(u′) ≥ prankε(w
′). Moreover, by the same

argument, prankε(w
′) ≥ prankε(Tπ−1(Tσ(w′))) = prankε(w).

Corollary 6.7. Consider the simple neural network architecture An,mh with parameter
space Wn,m

h . Consider two irreducible parameters w,w′ ∈ I[Wn,m
h ] and a radius ε ∈ R+.

If fw = fw′ then prankε(w) = prankε(w
′).

Proof. Since w,w′ are functionally equivalent and irreducible, they are related by some
permutation and negation (Theorem 3.39). The result follows by Proposition 6.6.

3Similar counterexamples hold for other natural choices of metric—parameter dependence is a conse-
quence of using a “local” definition. A more stable notion of parametric approximate degeneracy must
somehow aggregate neighbourhoods across equivalent parameters (see also Appendix A).
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Approximating parametric approximate rank

Algorithm 6.10 is a polynomial-time algorithm computing an upper bound on the para-
metric approximate rank. The algorithm essentially functions by replacing each of the
three main steps of Algorithm 4.15 (for computing the rank) with an approximate version,
as follows.

1. Instead of eliminating units with zero incoming weight vector, eliminate units with
approximately zero incoming weight vector (there is a nearby parameter where they
are zero).

2. Instead of partitioning the remaining units by lexicographic absolute incoming
weight and bias vector, cluster them into groups with similar lexicographic ab-
solute incoming weight and bias vectors (there is a nearby parameter where they
are equal).

3. Instead of eliminating unit groups with zero outgoing weight, eliminate unit groups
with approximately zero incoming weight (there is a nearby parameter where the
outgoing weights cancel).

Step (2) is non-trivial, I use a greedy approach, described separately as Algorithm 6.8.
This algorithm builds an approximate partition of a list of vectors by iteratively inserting
vectors into nearby groups, or, if there are no nearby groups, starting a new group.

Algorithm 6.8 (Greedy approximate partition). Given a vector space Rp, proceed:

1: procedure ApproxPartition(ε ∈ R+, u1, . . . , uK ∈ Rp)
2: J ← 1

3: v1,Π1 = u1, {1} . the first vector starts a group
4: for i← 2, . . . , K do . for the remaining vectors
5: for j ← 1, . . . , J do
6: if ‖ui − vj‖∞ ≤ ε then . if near a group-starter
7: Πj ← Πj ∪ {i} . join that group
8: skip to next iteration of outer loop (i) . (skip to next vector)
9: end if
10: end for . else, start a group
11: J ← J + 1

12: vJ ,ΠJ ← ui, {i}
13: end for
14: return Π1, . . . ,ΠJ

15: end procedure

Remark 6.9. Under the usual assumptions (cf. Section 4.2), the worst-case runtime for
Algorithm 6.8 is O(pK2).
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Algorithm 6.10 (Greedy bound for parametric approximate rank). Given a simple neu-
ral network architecture An,mh with parameter space Wn,m

h , proceed:

1: procedure Bound(ε ∈ R+, w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h )

2: . Identify units with non-near-zero incoming weight /

3: I ← { i ∈ {1, . . . , h} | ‖bi‖∞ > ε }
4: . Compute outgoing weight for approximately-mergeable units /

5: Π1, . . . ,ΠJ ← ApproxPartition(ε, abslex(bi, ci) for i ∈ I) . Algorithm 6.8
6: for j ← 1, . . . , J do
7: αj ←

∑
i∈Πj

signlex(bi) ai

8: end for
9: . Count approximately-mergeable units with non-near-zero outgoing weights /

10: return
∣∣{ j ∈ {1, . . . , J}

∣∣ ‖αj‖∞ ≤ ε · |Πj|
}∣∣ . |S| denotes set cardinality

11: end procedure

Remark 6.11. By Remark 6.9, Algorithm 6.10 runs in worst-case time O(nh2 +mh).

Correctness Theorem 6.12 (Algorithm 6.10). Consider a simple neural network ar-
chitecture An,mh with parameter space Wn,m

h . For w ∈ Wn,m
h and ε ∈ R+,

prankε(w) ≤ Bound(ε, w).

Proof. Trace the algorithm to construct a parameter u ∈ B̄∞(w; ε) with rank(u) ≤
Bound(ε, w). Construct u = (a

(u)
1 , . . . , a

(u)
h , b

(u)
1 , . . . , b

(u)
h , c

(u)
1 , . . . , c

(u)
h , d(u)) ∈ Wn,m

h as
follows. Set d(u) = d. For i /∈ I, ‖bi‖∞ ≤ ε, so set b(u)

i = 0, leaving a
(u)
i = ai and

c
(u)
i = ci. For i ∈ Πj, note that ‖abslex(bi, ci)− vj‖∞ ≤ ε, so set (b

(u)
i , c

(u)
i ) = signlex(bi)vj.

If ‖αj‖∞ ≤ ε · |Πj|, then set a(u)
i = ai − signlex(bi)αj|Πj|−1, else set a(u)

i = ai.
By construction, u ∈ B̄∞(w; ε). Moreover, rank(u) = Bound(ε, w): run Algo-

rithm 4.15: (1) the first step finds the same I, since those b(u)
i = 0; (2) the partitioning step

finds the same Π1, . . . ,ΠJ , since abslex(b
(u)
i , c

(u)
i ) = vj (note that signlex(b

(u)
i ) = signlex(bi));

(3) the counting step excludes the same αj, since those outgoing weights sum to 0.

Remark 6.13. Algorithm 6.10 does not compute the parametric approximate rank—
merely an upper bound. For example, there may be a more effective approximate partition
than that found by the greedy approximate partitioning algorithm (see also Remark 6.45).

Actually, this suboptimality is fundamental—computing a smallest approximate par-
tition is NP-hard, and can be reduced to computing the parametric approximate rank.
The remainder of this chapter formally proves this observation.
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6.2 Uniform point partition and related problems

The main aim of the rest of this chapter is to reduce xSAT (Problem 3.56) to the problem
of computing parametric approximate rank. To conceptually simplify the reduction, I first
reduce xSAT to a closer but simpler problem. Before giving that reduction (Section 6.3),
I dedicate this section to exploring the novel problem in detail, from three perspectives:

1. Uniform point partitioning: given some points in the plane, can the points be
partitioned into a small number of groups with small uniform diameter?

2. Uniform point covering: given some points in the plane, is there a small number of
new “covering” points so that each (original) point is near a covering point?

3. Clique partitioning on unit square graphs: given a special kind of graph called a
unit square graph, can the vertices be partitioned into a small number of cliques?

I show that these perspectives emphasise different aspects of the same computational
problem and suggest distinct connections to related work.

Perspective 1: Uniform point partition

The first perspective is inspired by Algorithm 6.8 and Remark 6.13. This problem cap-
tures the task of partitioning points in the plane into a small number of groups such that
each group fits within a small uniform neighbourhood. A decision variant is as follows.

Definition 6.14 ((k, ε)-partition). Consider n points x1, . . . , xn ∈ R2. A (k, ε)-partition
is a partition of {1, . . . , n} into k subsets Π1, . . . ,Πk such that the uniform distance
between points in any subset is at most ε:

∀p ∈ {1, . . . , k},∀i, j ∈ Πp, ‖xi − xj‖∞ ≤ ε .

Problem 6.15 (Uniform point partition, UPP). Given n points x1, . . . , xn ∈ R2; a diam-
eter ε ∈ R+; and some k ∈ N, determine if there is a (k, ε)-partition of the points.

ε

x1

x2

x3

x4

x5

x6

x7

x8

x9

ε

Π1

Π2

Π3

Π4

Figure 6.1: Example instance for uniform point partition (UPP, Problem 6.15). Left: nine
points x1, . . . , x9. Right: a (4, ε)-partition Π1, . . . ,Π4 (= {1, 3} , {2, 4} , {5, 8} , {6, 7, 9}).
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Perspective 2: Uniform point cover

The second, closely related perspective is the task of finding central points within small
uniform neighbourhoods (in simple neural networks, such points allow the approximate
merging of hidden units; cf. Correctness Theorem 6.12).

Definition 6.16 ((k, ε)-cover). Consider n source points in the plane, x1, . . . , xn ∈ R2.
A (k, ε)-cover is a list of k covering points y1, . . . , yk ∈ R2 such that each source point is
at most uniform distance ε from at least one covering point:

∀i ∈ {1, . . . , n},∃j ∈ {1, . . . , k}, ‖xi − yj‖∞ ≤ ε .

Problem 6.17 (Uniform point cover, UPC). Given n source points x1, . . . , xn ∈ R2; a
radius ε ∈ R+; and some k ∈ N, determine if there is a (k, ε)-cover of the source points.

ε

x1

x2

x3

x4

x5

x6

x7

x8

x9

ε

y1

y2

y3

y4

Figure 6.2: Example instance for uniform point cover (UPC, Problem 6.17). Left: nine
source points x1, . . . , x9. Right: a (4, ε)-cover y1, . . . , y4.

Remark 6.18. The covering points are not necessarily source points—they are uncon-
strained within the plane. This can affect the decision. For example, with x1 = (0, 0),
x2 = (2, 0), ε = 1, and k = 1, neither xi is a (k, ε)-cover, but y = (1, 0) is.

Remark 6.19. Uniform point cover is reminiscent of well-known hard clustering prob-
lems, with some subtle differences. Planar k-means (see, e.g., Mahajan et al., 2012),
concerns finding centroids minimising a weighted sum of squared Euclidean distances be-
tween source points and nearby centroids. Uniform point cover concerns minimising a
maximum of uniform distances instead. Vertex k-center (see, e.g., Garcia-Diaz et al.,
2017) concerns maximum (Euclidean) distances, but the covering points are constrained
to be source points. Remark 6.18 clarifies this crucial difference.

Remark 6.20. The closest related problem is perhaps a point covering problem stud-
ied by Supowit (1981, §4.3.2). Supowit’s problem matches uniform point cover, except
uniform distance is replaced by Euclidean distance. Supowit showed that this variant is
NP-complete by direct reduction from 3-SAT. My reduction (Section 6.3) is somewhat
similar, but with some simplifications afforded by the additional restrictions of xSAT.
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Perspective 3: Clique partition for unit square graphs

The third perspective strays from the simple neural network context, but reveals further
related work. This perspective is based on the problem of clique partition restricted to
a family of graphs I call unit square graphs. Unit square graphs are a uniform-distance
variant of unit disk graphs (based on Euclidean distance; cf. Clark et al., 1990).

Definition 6.21 (Unit square graph). Consider n points in the plane, x1, . . . , xn ∈ R2,
and a diameter ε ∈ R+. Thus define an undirected graph (V,E) with vertices V =

{1, . . . , n} and edges E =
{
{i, j}

∣∣ i 6= j, ‖xi − xj‖∞ ≤ ε
}
. A unit square graph is any

graph that can be constructed in this way.

Remark 6.22. “Unit square graph” comes from an equivalent definition of these graphs
as intersection graphs of unit squares. To see the equivalence, scale the collection of
squares by ε and then consider their centres. The same idea relates the proximity and
intersection models for unit disk graphs (Clark et al., 1990).

Definition 6.23 (Clique partition). Consider an undirected graph (V,E). A clique par-
tition of size k is a partition of the vertices V into k subsets Π1, . . . ,Πk such that each
subset is a clique:

∀p ∈ {1, . . . , k}, ∀vi 6= vj ∈ Πp, {vi, vj} ∈ E .

Problem 6.24 (Clique partition for unit square graphs, usgCP). Given a unit square
graph (V,E) and some k ∈ N, determine if there is a clique partition of size k.

ε

x1

x2

x3

x4

x5

x6

x7

x8

x9
v1

v2

v3

v4

v5

v6

v7

v8

v9

Π1

Π2

Π3

Π4

Figure 6.3: Example instance of clique partition for unit square graphs (usgCP, Prob-
lem 6.24). Left: nine points x1, . . . , x9, along with their ε-width squares. Middle: the
corresponding unit square graph with vertices v1, . . . , v9. Right: a partition of the unit
square graph into four cliques Π1, . . . ,Π4.

Remark 6.25. The clique partition problem, long known to be NP-complete in general
graphs (Karp, 1972), remains NP-complete when restricted to unit disk graphs (Cerioli
et al., 2004; 2011).4 Cerioli et al. (2004; 2011) gave a reduction from planar 3-SAT3̄ that
is somewhat similar to my reduction for unit square graphs (Section 6.3).

4Actually, Cerioli et al. (2004; 2011) studied penny graphs, which are special unit disk graphs in
which the Euclidean distance between points is at least ε (evoking the contact relationships among non-
overlapping coins). My reduction (Section 6.3) happens to produce a graph satisfying a uniform distance
version of this condition, thus showing that clique partition remains NP-complete in this case as well.
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Remark 6.26. I haven’t ruled out the case that unit disk graphs and unit square graphs
coincide, or that every unit disk graph is also a unit square graph.5 In either case, the
hardness of clique partition for unit square graphs would follow from the result of Cerioli
et al. (2004; 2011). Remembering the goal of studying parametric approximate rank, I
pursue a direct reduction for unit square graphs in lieu of clarifying this relationship.

Equivalence of the three perspectives

The above three problems—UPP, UPC, and usgCP—are equivalent, in the sense that there
is an immediate reduction between any pair of them, as follows.

Theorem 6.27 (Equivalence of UPP, UPC, and usgCP). Let x1, . . . , xn ∈ R2, ε ∈ R+, and
k ∈ N. The following conditions are equivalent:

(i) there exists a (k, ε)-partition of x1, . . . , xn;

(ii) there exists a (k, ε)-cover of 2x1, . . . , 2xn; and

(iii) the unit square graph on x1, . . . , xn (diameter ε) has a clique partition of size k.

Proof. (i ⇒ ii): Let Π be a (k, ε)-partition of the points x1, . . . , xn. Construct a (k, ε)-
cover of 2x1, . . . , 2xn as follows. For p = 1, . . . , k, define xmin, xmax, yp ∈ R2 with compo-
nents xmax,j = maxi∈Πp xi,j, xmin,j = mini∈Πp xi,j, and yp,j = (xmax,j + xmin,j)/2 (j = 1, 2).
Then for i ∈ Πp and j ∈ {1, 2},

|2xi,j − 2yp,j| = |2xi,j − (xmax,j + xmin,j)|
≤ |xi,j − xmin,j|+ |xi,j − xmax,j| (triangle inequality)

= xmax,j − xmin,j (xmin,j ≤ xi,j ≤ xmax,j)

= xα,j − xβ,j (α = argmaxa∈Πp xa,j, β = argminb∈Πp xb,j)

≤ ‖xα − xβ‖∞ ≤ ε. (α, β ∈ Πp)

It follows that ‖2xi − 2yp‖∞ ≤ ε, thus 2y1, . . . , 2yk is a (k, ε)-cover of 2x1, . . . , 2xn.
(ii ⇒ iii): Let y1, . . . , yk ∈ R2 be a (k, ε)-cover of 2x1, . . . , 2xn. Partition {1, . . . , n}

into Π1, . . . ,Πk by grouping points according to the nearest covering point (break ties
arbitrarily). Then for i, j ∈ Πp, {i, j} ∈ E of the unit square graph, since

‖xi − xj‖∞ =
1

2
‖2xi − 2xj‖∞ ≤

1

2

(
‖2xi − yp‖∞ + ‖yp − 2xj‖∞

)
≤ 1

2
(ε+ ε) = ε.

Thus Π1, . . . ,Πk is a clique partition of size k.
(iii ⇒ i): Let Π be a clique partition of size k. Then for i, j ∈ Πp, {i, j} ∈ E, and so

‖xi − xj‖∞ ≤ ε. Thus Π is a (k, ε)-partition.
5Switching to uniform distance will often change the graph, but there may be other points defining

the same graph. Consider “unit diamond graphs” (L1 distance), which are “rotated” unit square graphs.
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6.3 Complexity of uniform point partition

In this section, I show that UPP is NP-complete.6 The main part of the proof is a
reduction from the restricted Boolean satisfiability problem (xSAT, Problem 3.56) to UPP.
I conclude this section by commenting on various generalisations.

Reduction overview

The idea of the UPP instance is to build a collection of points mirroring the structure of
the bipartite variable–clause incidence graph (Definition 3.54) of the xSAT instance.

To each variable vertex, clause vertex, and edge corresponds a collection of points.
The points for each variable vertex can be partitioned in one of two configurations, based
on the value of the variable in a truth assignment. Each determines the partitioning of
the edge points so as to propagate these values to the clauses. The allowed number of
groups is carefully controlled so that there are enough to include the points of each clause
vertex if and only if some variable satisfies that clause in the assignment.

I detail the construction sketched above in several steps, below. I prove equivalence
to the original xSAT instance in Theorem 6.34.

Reduction step 1: Lay out the graph on a grid

Due to the restrictions on the xSAT instance, the bipartite variable–clause incidence graph
is planar with maximum degree three. Therefore there exists a graph layout where (1) the
vertices are positioned at integer coordinates, and (2) the edges comprise horizontal and
vertical segments between adjacent pairs of integer coordinates (Valiant, 1981, §IV).

Moreover, such a (planar, rectilinear, integer) grid layout can be constructed in poly-
nomial time (see, e.g., Valiant, 1981; Liu et al., 1998).7 Figure 6.4 shows three examples.

(φ1)

+

+

−

+ −

−

+

+

−

+

(φ2)

− +

+−+

+−

(φ3)

+ −

+ − +− +−+

+ +− ++−

Figure 6.4: Example planar, rectilinear, integer grid layouts of the bipartite variable–
clause incidence graphs from Figure 3.8. These layouts are computed by hand—those
produced by standard algorithms (e.g., Valiant, 1981; Liu et al., 1998) may be larger.

6By Theorem 6.27, it follows that UPC and usgCP are also NP-complete. I use UPP to streamline the
presentation by de-emphasising the graph structure and the choice of covering points.

7There is no requirement to produce an “optimal” layout—just a polynomial-time computable layout.
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Reduction step 2: Divide the layout into tiles

The grid layout serves as a blueprint for a UPP instance: it governs how the points
corresponding to each variable vertex, clause vertex, and edge are arranged in the plane.
The idea is to conceptually divide the plane into unit square tiles, with one tile for each
coordinate of the integer grid occupied by a vertex or edge in the grid layout. The tile
divisions for the running examples are shown in Figure 6.5.

Due to the restrictions on the xSAT instance, any tile division uses just forty distinct
tile types (just nine up to rotation and reflection). In particular, there are straight edge
segments and corner edge segments, plus clause and variable vertices with two or three
edges in any direction. Moreover, for variable vertices, exactly one direction corresponds
to a negative occurrence. Figure 6.6 enumerates these types.

(φ1)

+

+

−

+ −

−

+

+

−

+

(φ2)

− +

+−+

+−

(φ3)

+ −

+ − +− +−+

+ +− ++−

Figure 6.5: Example division of the grid layouts from Figure 6.4 into tiles.

+− +− +− +

−

+− +− + − +−

+− +− + − +−

−++

+−+

++−

− ++

+

−+

+

+−

−++

+−+

++−

−++

+−+

++−

Figure 6.6: Just forty tile types suffice to construct any tile division of a grid layout. Up
to rotation and reflection, just nine distinct types (for example, those highlighted) suffice.

Reduction step 3: Populate the instance with points

The points of the UPP instance are of two kinds (described in more detail below):

1. boundary points between neighbouring pairs of tiles; and

2. interior points within each tile in a specific arrangement depending on the tile type.

The boundary point can be grouped with interior points of one or the other neighbouring
tile. In this way, boundary points couple the choice of how to partition the interior points
of neighbouring tiles, creating the global constraint that corresponds to satisfiability.
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Reduction step 3a: Boundary points between neighbouring tiles

There is one boundary point at the midpoint of the boundary between each pair of
neighbouring tiles. A pair of neighbouring tiles is one for which there is an edge crossing
the boundary. It is not sufficient for the tiles to be adjacent. Figure 6.7 clarifies this
distinction using the running examples.

(φ1) (φ2)

boundary pt.

no boundary pt.

(φ3)

Figure 6.7: Example of the placement of boundary points between neighbouring tiles.
Boundary points are not placed between adjacent tiles if no edge crosses this tile boundary.

Reduction step 3b: Interior points for variable tiles

Due to the restrictions on the xSAT instance, each variable tile has one negative boundary
point and one or two positive boundary point(s) (corresponding to the occurrences of the
variable). The interior point arrangement for variable tiles ensures that, with a small
number of groups, it is possible to partition the interior points such that either (1) the
positive boundary point(s) are included; or (2) the negative boundary point is included;
but not both. Then, the choice of which boundary point(s) to include corresponds to the
value of the variable in a truth assignment.

Table 6.8 shows arrangements of interior points for each type of variable tile (up to
rotation and reflection). The exclusivity condition is formalised in Lemma 6.28.

Lemma 6.28. Consider an interior and boundary point arrangement from Table 6.8, or
a rectilinear rotation or reflection of such an arrangement. Let k ∈ {2, 3} be the allocated
number of groups, and let ε ∈ R+ be the scale.

(i) There is no (r, ε)-partition of the interior points if r < k.

(ii) For any (k, ε)-partition of the interior points, the negative boundary point is within
uniform distance ε of all points in some group, if and only if (neither of) the positive
boundary point(s) are within uniform distance ε of all points in any group.

Proof. It suffices to consider the arrangements in Table 6.8 because the uniform distance is
invariant to rectilinear rotation and reflection. The claims are then verified by exhaustive
consideration of all possible partitions of the interior points into at most k groups.
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Type n k Arrangement True partition False partition

+− 3 2

ε

+− 3 2

ε

++− 5 3

ε

−++ 5 3

ε

Table 6.8: Arrangement of interior points for variable tiles. The number n represents the
number of interior points (coloured). Nearby boundary points are also shown (black).
The number k represents the number of groups allocated to the tile during the reduction.

Remark 6.29. The true and false partitions indicated in the table are used in the forward
direction of the reduction proof to construct a partition given a satisfying assignment. In
the converse direction, one must consider other possible partitions. With the exception
of the arrangements in the fourth row, if the positive (negative) boundary point(s) are to
be grouped with the interior points of the tile, then the true (false) partition is the only
possible partition of the interior points using k groups. For the final row, there are some
other partitions where only one true boundary point is included, but, as suffices for the
reduction, there are no partitions including both positive and negative boundary points.
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Reduction step 3c: Interior points for edge tiles

Once the partition of a variable tile includes either the positive boundary point(s) or
negative boundary point, the role of the edge tiles is to propagate this choice to the
clause in which the variable occurs. This information can be communicated with simple
arrangements of points as summarised in Table 6.9. The arrangements are identical to
those for variables with two occurrences. As such the exclusivity condition in Lemma 6.30
is a special case of Lemma 6.28.

Type n k Arrangement Partition 1 Partition 2

3 2

ε

3 2

ε

Table 6.9: Arrangement of interior points for edge tiles. The number n represents the
number of interior points (coloured). The boundary points are also shown (black). The
number k represents the number of groups allocated to the tile during the reduction.

Lemma 6.30. Consider an interior and boundary point arrangement from Table 6.9, or
a rectilinear rotation or reflection of such an arrangement. Let ε ∈ R+ be the scale.

(i) There is no (r, ε)-partition of the interior points if r < 2.

(ii) For any (2, ε)-partition of the interior points, either boundary point is within uni-
form distance ε of all points in some group, if and only if the other boundary point
is not within uniform distance ε of all points in any group.

Proof. Special case of Lemma 6.28.

Remark 6.31. The partitions indicated in Table 6.9 are the only possible (2, ε)-partitions
of the interior points.
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Reduction step 3d: Interior points for clause tiles

The interior points of the clause tile can be partitioned if and only if one of the boundary
points is included by a neighbouring tile. Table 6.10 outlines such arrangements, and
Lemma 6.32 formalises the desired property.

Type n k Arrangement Possible partitions

3 2

ε

3 2

ε

4 3

ε

Table 6.10: Arrangement of interior points for clause tiles. The number n represents the
number of interior points (coloured). The boundary points are also shown (black). The
number k represents the number of groups allocated to the tile during the reduction.

Lemma 6.32. Consider an interior and boundary point arrangement from Table 6.10, or
a rectilinear rotation or reflection of such an arrangement. Let k ∈ {2, 3} be the allocated
number of groups, and let ε ∈ R+ be the scale.

(i) There is no (r, ε)-partition of the interior points if r < k.

(ii) For any (k, ε)-partition of the interior points, there is at least one boundary point
that is not within uniform distance ε of all points in any group.

Proof. Following Lemma 6.28, the conditions can be checked exhaustively.

Remark 6.33. Table 6.10 shows the only possible (k, ε)-partitions of the interior points,
except in the third row, where a reflected version of the left partition is also possible.
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Reduction step 4: Set the scale and number of groups

The reduction works at any (polynomial-time computable) scale—simply rescale the
points. For concreteness, set the diameter to 1/4, giving each tile unit width. For the
number of groups, total the allocations for the interior points of each tile (k in Tables 6.8,
6.9, and 6.10). This completes the construction. Figure 6.11 shows the full UPP instances
for the running examples (cf. Examples 3.48 and 3.57 and Figures 3.8, 6.4, 6.5 and 6.7).

Formula n k Source points

φ1 65 32

ε

φ2 28 14

ε

φ3 68 34

ε

Table 6.11: Full examples of the reduction from xSAT to UPP, based on xSAT instances
described in Examples 3.48 and 3.57. Exercise: is there a (k, ε)-partition in each case?
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Proof of the reduction

I formally prove that the above construction indeed reduces xSAT to UPP.

Theorem 6.34 (xSAT P−→ UPP).

Proof. Given an instance of xSAT, that is, a Boolean formula in conjunctive normal form
φ with variables v1, . . . , vn and clauses c1 ∧ · · · ∧ cm satisfying the additional restrictions
outlined in Definition 3.55, construct an instance of UPP as described above, namely,
the points x1, . . . , xN (as described in step 3, the interior points from all tiles and the
boundary points between them), a number of groups k (as described in step 4, the total
allocated groups from all of the tiles), and an arbitrary diameter ε (such as 1/4, as
described in step 4). Step 1 (grid layout) runs in polynomial time (Liu et al., 1998), and
the remaining steps run in linear or constant time.

It remains to show that the constructed instance of UPP is equivalent to the original
xSAT instance. That is, φ is satisfiable if and only if there exists a (k, ε)-partition of
x1, . . . , xN .

(⇒): Suppose φ is satisfiable. Let θ be a satisfying truth assignment. Produce a
(k, ε)-partition as follows.

1. Partition the interior points of each variable tile using the true partition or false
partition (Table 6.8), based on the value of this variable under θ. Include the
boundary points as indicated.

2. Following the included boundary points through zero or more edge tiles to the clause
tile, partition the interior points of each edge tile according to Table 6.9 such that
the boundary point in the direction of the clause tile is included.

3. Since θ is a satisfying assignment, every clause tile is reached in this way at least
once, and thus has at least one of its boundary points included in the groups
described in steps (1) and (2). For each clause tile, partition the interior points
according to Table 6.10, including the remaining boundary points, if any.

4. Following the included boundary points through zero or more edges back to a
variable tile, partition the interior points of each edge tile according to Table 6.9
such that the boundary point in the direction of the variable tile is included.

The final step includes exactly the boundary points that were left out in step (1), since
these are the edges for which the clause tiles were left to include the boundary point on
that side in step (3). Thus, all tiles have their interior and boundary points included.
The number of groups is exactly in accordance with the allocated number of groups per
tile. Therefore, the constructed partition is a (k, ε)-partition, as required.
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(⇐): Suppose there is a (k, ε)-partition of the points. Since the interior points of each
tile are separated from the tile boundaries by at least ε, no group can include interior
points from two separate tiles. It follows that the interior points of each tile must be
partitioned into their allocated number of groups: if the interior points of one tile were
to use more than the allocated number of groups, then there would not be enough groups
left to include all of the interior points of some other tile, by Lemmas 6.28(i), 6.30(i), and
6.32(i). Moreover, since the allocated number of groups leaves no space for the boundary
points to have their own groups, each boundary point must be in a group with interior
points from one of its neighbouring tiles.

Consider each clause tile. By Lemma 6.32(ii), there must be at least one boundary
point that is included with the interior points of the neighbouring tile. Pick one such
direction for each clause and use this to construct a satisfying assignment for φ as follows.

By Lemma 6.30(ii), each boundary point must be included with the interior points of
the next edge tile in the sequence of zero or more edge tiles on the way to the variable.
In turn, the boundary point at the variable tile must be included with the interior points
of the variable tile. If this is a positive boundary point, set this variable “true” in a truth
assignment θ, and if it is a negative boundary point, set the variable “false”.

This uniquely defines θ for all variables reached in this way at least once—if a variable
is reached twice, it must be to two positive boundary points, since by Lemma 6.28(ii),
it is impossible for the partition to have both a negative and a positive boundary point
included with the interior points of a variable tile.

Since some variables may not be reached by following the chosen edges, complete the
definition of θ by assigning arbitrary truth values to such variables. These variables are
not necessary to see that θ is a satisfying assignment for φ.

NP-completeness proof

Theorem 6.35 (UPP is NP-complete).

Proof. UPP ∈ NP : a (k, ε)-partition of the points acts as a certificate. Such a parti-
tion can be verified in polynomial time by computing the pairwise uniform distances
within each group. Since xSAT is NP-complete by Theorem 3.58 and xSAT P−→ UPP by
Theorem 6.34, UPP is NP-complete.

Corollary 6.36 (UPC and usgCP are both NP-complete).

Proof. By Theorem 6.27, UPP P−→ UPC P−→ usgCP P−→ UPP. It then follows by Theorem 6.35
that all three problems are in NP and, moreover, are NP-complete.
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Complexity of generalisations beyond the plane

All three problems permit an obvious generalisation beyond R2 to Rp for any p ≥ 1. For
example, adopting the partitioning perspective, and with a suitable generalisation of the
notion of (k, ε)-partition, consider the following problem:

Problem 6.37 (Uniform point partition in Rp, UPPp). Let p ∈ N. Given n points
x1, . . . , xn ∈ Rp; a diameter ε ∈ R+; and some k ∈ N, determine if there is a (k, ε)-
partition of the points.

Corollary 6.38 (If p ≥ 2, then UPPp is NP-complete).

Proof. UPPp ∈ NP with a (k, ε)-partition as a polynomial-time verifiable certificate. Then
for p ≥ 2, UPP P−→ UPPp by embedding the points in the plane into, for example, the first
two dimensions of Rp (leaving the remaining components zero)—any (k, ε)-partition of
the higher-dimensional points is also a (k, ε)-partition of the 2-dimensional points, and
vice versa.

Remark 6.39. By a p-dimensional generalisation of Theorem 6.27, p-dimensional gen-
eralisations of usgCP and UPC are also NP-complete for p ≥ 2.

Remark 6.40. In contrast, UPP1 is easy. A minimal partition can be constructed using
a greedy algorithm with runtime O(n log n) (where n is the number of points): first, sort
the n points by their value. Then, proceeding through the points in increasing order, if
a point, x, is not yet grouped, group all points in the neighbourhood [x, x+ ε]. Once all
points have been processed in this manner, the resulting partition is minimal, and so a
(k, ε)-partition exists if and only if there are at most k groups in the current partition.
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6.4 Complexity of parametric approximate rank

In this section, I show that the following decision problem is NP-complete.

Problem 6.41 (Parametric approximate rank, PAR). Given a simple neural network
architecture An,mh , a neural network parameter w ∈ Wn,m

h , a uniform radius ε ∈ R+, and
a maximum rank r ∈ N, determine whether prankε(w) ≤ r.

Equivalently, deciding if a parameter is within some uniform distance of a bounded
rank region is NP-complete (Proposition 6.2(iv)). Moreover, it follows that computing
the parametric approximate rank itself is NP-hard (with the parametric approximate
rank, one can immediately answer Problem 6.41).

The foundation for this result has been established in Sections 3.4 and 6.3. It remains
only to reduce UPC (Problem 6.17) to PAR and to show that PAR ∈ NP .

Reduction from uniform point covering

Theorem 6.42 shows a reduction based on the following approach. Given an instance of
UPC, consider an architecture with one hidden unit per source point in the instance, one
input unit, and one output unit. Construct a parameter using the coordinates of the
source points as the incoming weights and biases for the hidden units. Actually, to avoid
issues with zeros and lexicographic sign, first translate all of the source points well into
the positive quadrant. Likewise, set the outgoing weights to some high positive value.

If there is a small cover of the source points, then the hidden units can be perturbed
by a small amount so that they match up with the (translated) covering points. Since
there are few covering points, many units can be merged in the perturbed parameter, so
the original parameter has low parametric approximate rank.

Conversely, since all of the weights and biases are highly positive, then any nearby
low-rank parameter must be due to the approximate mergeability of the units. Therefore
if the parameter has low parametric approximate rank, there is a small cover of the
translated points (and, in turn, the original points).

Theorem 6.42 (UPC P−→ PAR).

Proof. Given an instance of UPC—that is, n source points in the plane, x1, . . . , xn ∈ R2;
a uniform radius ε ∈ R+; and some k ∈ N, construct an instance of PAR with radius ε,
maximum rank k, and parameter for architecture A1,1

n constructed as follows.

1. Find the minimum coordinates amongst the source points. Define xmin ∈ R2 as

xmin =

(
min

i=1,...,n
xi,1, min

i=1,...,n
xi,2

)
.

Note that the minimisation runs over each dimension independently.
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2. Define a translation T : R2 → R2 such that

T (x) = x− xmin + (2ε, 2ε).

Translate the source points x1, . . . , xn to x′1, . . . , x′n where x′i = T (xi). Note (for
later) that all components of the translated points are at least 2ε by step (1).

3. Construct the neural network parameter:

w = (a1, . . . , an, b1, . . . , bn, c1, . . . , cn, 0) ∈ W1,1
n = R3n+1

where for i = 1, . . . , n, ai = 2ε, bi = x′i,1, and ci = x′i,2.

This construction requires only linear time. It remains to show that the constructed
instance of PAR is equivalent to the given instance of UPC, that is, there exists a (k, ε)-
cover of the source points if and only if the constructed parameter has prankε(w) ≤ k.

(⇒): Suppose there exists a (k, ε)-cover y1, . . . , yk. Define κ : {1, . . . , n} → {1, . . . , k}
such that xi is nearest to yκ(i) (breaking ties arbitrarily). Then for j = 1, . . . , k, define
y′j = T (yj), where T is the translation defined in step (2) above. Define the parameter

w? = (a?1, . . . , a
?
n, b

?
1, . . . , b

?
n, c

?
1, . . . , c

?
n, 0) ∈ W1,1

n

where, for i = 1, . . . , n, a?i = 2ε, b?i = y′κ(i),1, and c?i = y′κ(i),2. Then rank(w?) ≤ k,
since there are at most k distinct incoming weight and bias vectors (namely y′1, . . . , y′k).
Moreover, ‖w − w?‖∞ ≤ ε: both have no output bias, and, for i = 1, . . . , n, a?i = ai and

‖(bi, ci)− (b?i , c
?
i )‖∞ =

∥∥x′i − y′κ(i)

∥∥
∞ =

∥∥T (xi)− T (yκ(i))
∥∥
∞ =

∥∥xi − yκ(i)

∥∥
∞ ≤ ε

by the defining property of the cover. Therefore prankε(w) ≤ rank(w?) ≤ k.
(⇐): Suppose prankε(w) ≤ k, with w? ∈ B̄∞(w; ε) such that rank(w?) = r ≤ k.

It suffices to produce an (r, ε)-cover, which can always be extended to a (k, ε)-cover by
adding k − r arbitrary covering points. Now, in general, the only ways that w? could
have reduced rank compared to w are the following (cf. Algorithm 4.12).

1. Some bi could be perturbed to zero to allow the corresponding unit to be removed.

2. Two units with (bi, ci) and (bj, cj) within 2ε could be perturbed to have identical
weight and bias vectors, allowing them to be merged.

3. Two units with (bi, ci) and −(bj, cj) within 2ε could be perturbed to have identically
negative weight and bias vectors, again allowing them to be merged.

4. Some m units, merged through the above options (or m = 1) with total outgoing
weight within mε of zero, could be perturbed to make the total zero.
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But, by construction, all ai, bi, ci ≥ 2ε > 0, ruling out (1) and (3), and also (4) since any
such total outgoing weight is 2mε > mε. This leaves option (2) alone responsible.

Accordingly, there must be exactly r distinct vectors among the incoming weight and
bias vectors of w?. Denote these vectors y′1, . . . , y′r—they constitute an (r, ε)-cover of the
incoming weight and bias vectors of w, x′1, . . . , x′n (as w? ∈ B̄∞(w; ε)). To complete the
proof invert T to produce an (r, ε)-cover of x1, . . . , xn.

NP-completeness proof

Based on the above reduction, I prove that PAR is NP-complete.

Theorem 6.43 (PAR is NP-complete).

Proof. First, UPC is NP-complete (Corollary 6.36) and UPC P−→ PAR (Theorem 6.42). To
show PAR ∈ NP : given a parameter w ∈ Wn,m

h , radius ε ∈ R+, and maximum rank r ∈ N,
use as a certificate an approximate partition (radius ε) of the vectors abslex(bi, ci) for i
with ‖bi‖∞ > ε, such that when this partition stands in for the result of Algorithm 6.8 in
Algorithm 6.10, the result is at most r. Such a certificate can be verified in polynomial
time by checking the diameter of each group and then following Algorithm 6.10.

As to the validity of the certificate: if the instance has parametric approximate rank
at most r then there is a low-rank parameter within its neighbourhood from which the
certificate can be constructed by identifying the units that would be merged if the pa-
rameter were reduced. Conversely, if such a certificate exists, then, à la Correctness
Theorem 6.12, a nearby parameter with rank at most r can be constructed (to produce
the new incoming weight and bias vectors, apply the construction in Theorem 6.27).8

Remark 6.44. Theorem 6.42 only uses architectures with a single input unit and a single
output unit. PAR remains hard for architectures with more input or output units: extend
the reduction to set additional outgoing and incoming weights to 0. Given p incoming
weights, compare with UPPp+1 (Problem 6.37, the +1 comes from counting biases).

Remark 6.45. While UPP1 is in P (Remark 6.40), it does not follow that a variant of
PAR for an unbiased single-input simple neural networks is easy. In fact, this variant
remains NP-complete—a reduction from the known NP-complete subset sum problem
(Karp, 1972)9 is (still) possible. Describing this reduction is beyond the scope of this
chapter, but this underscores a “second layer” of complexity in PAR—one must seek an
approximate partition that jointly maximises the numbers of units eliminated (1) by
approximate merging and (2) with total outgoing weight near zero.

8Why not just use a nearby low-rank parameter itself as the certificate? An arbitrary nearby low-rank
parameter is unsuitable because the components of the parameter could have unbounded description
lengths (or even be uncomputable). The proof essentially establishes that there is always a nearby
equally-low-rank parameter that can be (indirectly) described and verified in polynomial time.

9Karp (1972) studied the subset sum problem under the name “knapsack.” It is a special case of the
knapsack problem as described in, for example, Garey and Johnson (1979).
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Chapter 7

Discussion

In this chapter, I briefly discuss the implications of my results for understanding deep
learning, and promising directions for future work opened up by my investigation.

7.1 Degeneracy beyond simple neural networks

The basis for the algorithmic framework for analysing degeneracy in simple neural net-
works is the correspondence between reducibility, or, local redundancy, and non-minimality,
or, global redundancy (cf. Section 2.4). Due to this equivalence, the rank can be efficiently
computed as if by the repeated application of operations that eliminate local redundancy.
All results in this thesis essentially stem from this framework.

The first and clearest presentation of the equivalence between local and global redun-
dancy is due to (Sussmann, 1992; cf. Section 3.3 in this thesis), motivating the choice of
the simple neural network setting in this thesis. However, having taken this first step,
similar analyses can be conducted for any neural network architecture in which a simi-
lar equivalence holds. This should include more practical neural network architectures,
including with multiple layers1 and the rectified linear unit activation function.

Certain modifications will be necessary to account for the different conditions of re-
ducibility. For example, in the case of the rectified linear unit activation function, rather
than computing signs and absolute values, one must instead perform positive scale nor-
malisation operations. I note that the operations of merging units with the same incoming
weights and biases and eliminating units with zero outgoing weights are universal.

A sensible starting point for such future work would be the very general analysis of
Vlačić and Bölcskei (2021), in terms of arbitrary connection graphs and based on the
affine symmetries of various activation functions.

1For multi-layered architectures, the rank can be defined on a per-layer basis, summarised in a tuple.
Likewise, it should be possible to decompose the minimisation problem layer-wise.
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7.2 Degenerate geometry and deep learning

Perhaps due to the a priori atypicality of degenerate parameters, the field has largely
worked under an implicit assumption that non-degenerate neural network geometry de-
scribes neural networks learned in practice. Degenerate neural network geometry has the
potential to clarify several topics of current empirical and theoretical2 investigation in
the field. In particular, consider the following topics.

1. Overparameterisation and memorisation. It is routine practice to use neural net-
work architectures with more than enough units to precisely memorise the examples
in the data set. The generalisation question becomes, which of the available mem-
orising parameters will be found by a learning algorithm? (cf. Zhang et al., 2017;
2020; 2021; Belkin et al., 2019; Belkin, 2021; Bartlett et al., 2021; Dar et al., 2021).

2. Curvature of the loss landscape. Empirical studies have recently investigated the
curvature of the loss landscape, especially at the solutions found by standard deep
learning algorithms, consistently finding many approximately flat directions3 (as
indicated by the Hessian eigenspectrum being largely concentrated near zero; Sagun
et al., 2017; 2018; Chaudhari et al., 2017; 2019; Papyan, 2018; Ghorbani et al., 2019).

3. Connectivity of the loss landscape. Recent empirical studies have observed that
low-lying regions of the loss landscape are often connected by (sometimes indirect)
paths of low-loss parameters (Freeman and Bruna, 2017; Sagun et al., 2018; Draxler
et al., 2018; Garipov et al., 2018; Entezari et al., 2021).

Observe that if a parameter implements a function that achieves low loss or memorises
a data set, then any functionally equivalent parameter does so as well. Therefore, the so-
called critical locus of memorising parameters, and the low-lying regions of the parameter
space more broadly, can be characterised as a union of functional equivalence classes.

In the case of memorisation, once one passes the minimum number of units required
to perfectly encode the data set, then the critical locus necessarily contains degenerate
parameters. This means that the richer geometry of degenerate functional equivalence
classes (cf. Section 5.2), is part of the structure of the critical locus (and degenerate
parameters themselves are potential candidates for selection).

2Existing theory addresses these topics (see, e.g., Freeman and Bruna, 2017; Cooper, 2018; 2020;
Nguyen et al., 2019; Nguyen, 2019; 2021; Brea et al., 2019; Kuditipudi et al., 2019; Venturi et al., 2020;
Şimşek et al., 2021). Applying the perspective of degenerate neural network geometry to interpret this
work—especially that based on unit pruning (Kuditipudi et al., 2019), permutation symmetries (Brea
et al., 2019), and embedding (Şimşek et al., 2021)—is important future work.

3“Flat minima” have long been associated with reliable generalisation, based on the minimum de-
scription length principle (Hinton and van Camp, 1993; Hochreiter and Schmidhuber, 1994; 1997a) and
Bayesian statistical arguments (Hochreiter and Schmidhuber, 1997a; Langford and Caruana, 2001).
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Moreover, parameters with low parametric approximate rank would make appealing
memorising solutions. Such parameters implement similar functions to those of their
nearby low-rank parameters, which may have desirable generalisation properties due to
parsimony. In particular, the additional complexity in the solution could serve to drive
the loss to zero on the observed examples without largely changing the function (cf. the
“simple-plus-spiky” decomposition posited by Bartlett et al., 2021, §7).

Conversely, suppose that degenerate parameters lie (approximately) within the low-
lying regions. Then their richer functional equivalence classes (as a union of manifolds,
Theorem 5.13) would explain (approximately) flat directions, and Theorem 5.25 would
similarly imply (approximate) connectivity of certain low-lying regions.

Consider the following concrete example in the simple setting. A non-degenerate pa-
rameter with low parametric approximate rank and low loss has a bounded-loss path
to a nearby low-rank parameter. This low-rank parameter has a piecewise linear path
connected and fixed-loss functional equivalence class innervating the parameter space, in-
cluding approaching all transformed versions of the original parameter (cf. Corollary 6.7).

No individual functional equivalence class describes the low-lying region. In prac-
tice, observed low-loss paths appear to cut across multiple functional equivalence classes
(Garipov et al., 2018). This suggests a need for future work on partial neural network
geometry, studying classes of parameters with equal outputs on a (finite) subset of inputs.

Parametric instability

A lesson to be taken from degenerate neural network geometry is that functional equiva-
lence does not imply that parameters are similar in other respects. This lesson arises in
prior work studying the classification of degenerate critical points (Fukumizu and Amari,
2000; Fukumizu et al., 2019; cf. Section 2.5, above), and recurs in this thesis. Theo-
rem 5.13 reveals that the degenerate functional equivalence class is a non-manifold whose
dimension varies at different points. Example 6.5 demonstrates equivalent degenerate
parameters with varying degrees of approximate degeneracy (proximity to even more de-
generate parameters). Simple examples (cf. Table 2.7) show that parametric norms vary
for equivalent degenerate parameters. These differences are consequential for learning
(which operates by local search) or in any attempt to judge neural networks by the size,
flatness, or compressibility of their parameters.

Yet this lesson is not conveyed by non-degenerate parameters, for which there is no
local variation,4 and for which the only symmetries are linear isometries (cf. Corollary 6.7).
This suggests that, to account for possible degeneracy, one should base metrics on the
whole functional equivalence class, a canonical representative, or the function itself.

4The non-degenerate functional equivalence class is discrete for simple neural networks (Theo-
rem 3.39). With the rectified linear unit activation function, positive scaling allows continuous variation.
It has been noted that various notions of flatness, for example, are sensitive to scaling (Dinh et al., 2017).
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7.3 Measuring degeneracy

A key motivation for studying degeneracy in neural networks is that it provides a natural
measure of the true complexity of a neural network, as distinct from problematic measures
such as the mere number of hidden units available.

The rank is primarily a theoretical measure of degeneracy. It serves as an ideal basis
on which to develop the theoretical results in Chapters 5 and 6, however, it is of limited
suitability as a practical measure of neural network complexity (if for no other reason
than limitations in numerical precision preventing the observation of identically equal,
negative, or zero weights and biases in a practical setting).

The parametric approximate rank is a natural attempt to relax the precise constraints
of the rank and could serve as a meaningful practical measure of neural network complex-
ity. However, Chapter 6 shows that while it is easy to verify degeneracy given a nearby
low-rank parameter, computing the parametric approximate rank itself is intractable.

There is still hope for developing an effective (parametric approximate) rank-based
measure of neural network complexity. First, NP-hardness does not preclude the devel-
opment of fast approximation algorithms that can produce effective bounds, and effective
bounds are still useful as a one-sided measure of complexity. Algorithm 6.10 provides one
such algorithm (albeit with superlinear runtime). Chapter 6, especially the discussion of
related problems, connects this problem to the substantial literature on approximation
algorithms for hard problems (see, e.g., Garey and Johnson, 1979, §6, as a starting point).
Future work can develop more efficient and effective bounding algorithms.

Second, the difficulty of computing the parametric approximate rank for all instances
does not necessarily imply the difficulty of computing the parametric approximate rank
in typical instances. The reductions in Chapter 6 essentially construct pathological pa-
rameters, poised between nearby regions of low-rank parameters just such that choosing
the optimal direction in which to perturb the parameter involves solving a highly complex
combinatorial optimisation problem equivalent to (a hard instance of) Boolean satisfia-
bility. It is far from clear that typical learned parameters have this character.5 Consider
an analogy to clustering problems such as k-means (cf. Remark 6.19), well known to
be NP-complete in general, but for which near-optimal solutions can often be found
efficiently for typical instances (Daniely et al., 2012; though see also Ben-David, 2015).

Having proved that computing the parametric approximate rank precisely in the most
difficult instances is as hard as Boolean satisfiability, this thesis leaves as an open problem
the difficulty of effectively approximating the parametric approximate rank of typical
neural network parameters encountered in practice.

5Degenerate parameters are themselves, a priori, atypical (cf. Section 2.5 and Remark 3.45), and
approximately degenerate parameters may or may not arise typically in practice. Here I claim that even
among approximately degenerate parameters, really hard instances of PAR may be atypical.
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Chapter 8

Conclusion

It is well known that neural network parameters do not uniquely implement functions. By
exchanging unit weights, or through a small number of additional operations depending
on the activation function, one can generate many distinct but functionally equivalent
neural network parameters. For almost all neural networks, such operations exhaustively
describe the functional equivalence class. For certain degenerate neural networks, there
are additional parameters implementing the same function. Since some of these imple-
mentations correspond to smaller networks, studying such structural degeneracy has the
potential to clarify the nature of neural network complexity.

In this thesis, I comprehensively investigate structural degeneracy in single-hidden-
layer biased hyperbolic tangent networks. While the degenerate case is far more complex
than the non-degenerate case (because there are additional possibilities to consider), it
is still possible to make progress with an algorithmic approach. Based on Sussmann’s
characterisation of degeneracy in terms of conditions of reducibility (Sussmann, 1992),
I develop an algorithmic framework for analysing and measuring degeneracy, including
the notion of neural network rank (the minimum number of hidden units required to
implement a given function). This algorithmic framework leads to a characterisation of
the complete functional equivalence class in the degenerate case. Moreover, I develop a
measure of approximate degeneracy based on proximity to low-rank parameters.

Despite having measure zero, the set of degenerate parameters has a rich internal
structure. I study the basic properties of sets of bounded-rank parameters (which are
closed and algebraic), bounded-rank functions (which are highly non-convex), the de-
generate functional equivalence classes themselves (which are piecewise linear path con-
nected), and the neighbourhoods of low-rank regions of the parameter space (which have
a highly complex structure, in that determining membership therein is NP-complete).

This thesis lays a foundation for future work developing efficient measures of approxi-
mate degeneracy, for empirically investigating the prevalence of approximate degeneracy
in learned neural networks, and for clarifying the role of degeneracy in neural network
learning more broadly.
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Appendix A

Degenerate Neighbourhoods
in Function Space

In this appendix, I introduce a second approximate measure of neural network degeneracy:
the functional approximate rank. Like the parametric approximate rank (Chapter 6), the
functional approximate rank of a neural network is defined based on the rank of nearby
neural networks. The key difference is that for the functional approximate rank, I use
neighbourhoods in function space rather than parameter space. The contents of this
appendix are as follows.

1. In Appendix A.1, I review the necessary preliminary mathematical definitions and
notation for defining the L2 semimetric between functions.

2. In Appendix A.2, I give a lemma relating uniform neighbourhoods in parameter
space with L2 neighbourhoods in function space.

3. In Appendix A.3, I introduce the functional approximate rank for simple neural
networks. I discuss the definition from several perspectives, including the relation-
ships to the parametric approximate rank (using the result of Appendix A.2), neural
network compressibility (Buciluǎ et al., 2006; Hinton et al., 2014), and approxima-
tion complexity theory (Barron, 1993; Mhaskar, 1996). Each perspective leads to a
different method of bounding the functional approximate rank.
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A.1 Function spaces

Neural networks implement functions mapping between an input vector space and an
output vector space. The set of such mappings itself has the structure of an infinite-
dimensional abstract vector space. In this section, I recall the measure theory required
to imbue this space with a semimetric structure (as an L2 space).

For readers not already familiar with elementary functional analysis, I note that a
somewhat informal familiarity with the contents of this section is sufficient to understand
this appendix. For a comprehensive introduction, consult Cohn (2013, §§1–3,10).

The Euclidean metric

The uniform norm reigns in the chapters of this thesis, governing the measurement of
parameter vectors (Section 3.1). In this appendix, Euclid sets the standard by which
input and output vectors are measured. I recall the following elementary definitions.

Definition A.1 (Euclidean norm). Consider a vector x ∈ Rn. The Euclidean norm of
x, denoted ‖x‖2, is defined as ‖x‖2 =

√∑n
i=1 xi

2.

Definition A.2 (Euclidean distance). Consider a pair of vectors x, y ∈ Rn. The Eu-
clidean distance between x and y, denoted ‖x− y‖2, is defined as the Euclidean norm of
the difference between x and y: ‖x− y‖2 =

√∑n
i=1(xi − yi)2.

Input measures

To measure functions (in the L2 sense), it is first necessary to weigh their inputs.

Definition A.3 (Input measure). Fix an input dimension n ∈ N+. Let B(Rn) denote the
Borel σ-algebra on Rn (for current purposes, a set of subsets of Rn). An n-dimensional
input measure is a probability measure q on Rn: a function q : B(Rn)→ [0, 1] satisfying

(i) q(∅) = 0;

(ii) q(Rn) = 1; and

(iii) if A1, A2, . . . ∈ B(Rn) is a sequence of disjoint sets, then q (
⋃∞
i=1Ai) =

∑∞
i=1 q(Ai).

Remark A.4. For current purposes, it suffices to view q as a kind of probability distri-
bution over input vectors in Rn: a function that takes a subset A ⊂ Rn and returns the
probability of the event that a randomly chosen input vector is in A. Then, the co-domain
and the conditions (i)–(iii) ensure that these probabilities satisfy Kolmogorov’s axioms
(Kolmogorov, 1933).
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Integration

Having weighed inputs, it is then possible to compute a weighted average output of a
(sufficiently well-behaved) function.

Definition A.5 (Integral with respect to an input measure). Consider an n-dimensional
input measure q and a q-integrable function f : Rn → R (see Remark A.7). Let the
expression ∫

Rn
f(x) dq(x)

denote the integral of the function f with respect to the input measure q.

Remark A.6. A full definition of the value of the integral is omitted for brevity but
can be found in Cohn (2013, §2). For current purposes, it suffices to understand the
integral as a weighted average of the function output, with inputs weighted according to
the probability ascribed by the input measure q.

Remark A.7. Definition A.5 defines the integral for a q-integrable function f . A suffi-
cient condition (and all that is necessary for this appendix) is that f is continuous and
bounded, since q is a probability measure (Cohn, 2013, Examples 2.1.2(a) and 2.3.7(a)).

L2 space of square integrable functions

With input measures and integration, one can define the size of a function as the (square
root of the) weighted average squared Euclidean size of the function’s output. This
requires the squared size of the output to be q-integrable (Definition A.5) leading to the
following space of class of functions that can be measured in this way.

Definition A.8 (Square integrable functions). Consider n,m ∈ N+, and an n-dimensional
input measure q. A function f : Rn → Rm is square integrable with respect to the mea-
sure q if the function mapping x 7→ ‖f(x)‖2

2 is q-integrable. Denote the set of such square
integrable functions L2(q,Rn,Rm).

Remark A.9. L2(q,Rn,Rm) is closed under pointwise scalar multiplication and point-
wise addition of functions, so forms an abstract vector space of functions.

Remark A.10. Following Remark A.7, for f to be square integrable with respect to any
input measure, it suffices for f to be continuous and bounded.

The space of simple neural network functions (Section 3.2) is a subspace of the space
of square integrable functions, as simple neural network functions are square integrable:

Proposition A.11. Consider an n-dimensional input measure q. Fn,m∞ ⊂ L2(q,Rn,Rm).

Proof. The hyperbolic tangent is continuous and bounded, so any simple neural network
function f ∈ Fn,mh (as a componentwise hyperbolic tangent up to affine linear transfor-
mations) is as well. Therefore f is square integrable with respect to q (Remark A.10).
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The L2 semimetric

It is time to define the L2(q) seminorm and L2(q) distance semimetric—measures of the
size of and distance between square integrable functions.

Definition A.12 (L2 seminorm of a function). Consider an n-dimensional input measure
q. Let f ∈ L2(q,Rn,Rm) be a square integrable function. Define the L2(q)-seminorm of
f , denoted ‖f‖L2(q), as

‖f‖L2(q) =

(∫

Rn
‖f(x)‖2

2 dq(x)

) 1
2

.

Definition A.13 (L2 distance semimetric between two functions). Consider an n-dimen-
sional input measure q. Let f, g ∈ L2(q,Rn,Rm) be a pair of square integrable functions.
Define the L2(q)-distance between f and g as

‖f − g‖L2(q) =

(∫

Rn
‖f(x)− g(x)‖2

2 dq(x)

) 1
2

.

Remark A.14. Semimetrics (seminorms) possess nearly all of the properties of metrics
(norms), except they are not necessarily positive for distinct (non-zero) functions. Indeed
if f 6= g differ only for inputs that are not assigned positive probability by q, then
‖f − g‖L2(q) = 0. The remaining properties are sufficient for my analysis.

Finally, the L2 semimetric allows the following definition of an L2 neighbourhood
(also L2 ball)—a set of functions with similar outputs to a given function.

Definition A.15 (Closed L2 neighbourhood). Consider n,m ∈ N+ and an n-dimensional
input measure q. Given a square integrable function f ∈ L2(q,Rn,Rm) and a positive
scalar ε ∈ R+, the closed L2(q) neighbourhood of f with radius ε, denoted B̄L2(q)(f ; ε),
is the set of square integrable functions with L2(q) distance at most ε from f :

B̄L2(q)(f ; ε) =
{
g ∈ L2(q,Rn,Rm)

∣∣∣ ‖f − g‖L2(q) ≤ ε
}
.
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A.2 Parametric and functional neighbourhoods

This section proves the following lemma, which shows a link between uniform neighbour-
hoods in parameter space and L2 neighbourhoods in the space of simple neural networks.

Definition A.16 (Raw second moment of an input measure). Given an n-dimensional
input measure q, define the raw second moment of q, denoted M2

q, as

M2
q =

∫

Rn
‖x‖2

2 dq(x).

Moreover, let Mq denote its square root Mq =
√
M2

q.

Lemma A.17 (Uniform distance and L2 distance). Consider a simple neural network
architecture An,mh with parameter space Wn,m

h . Let w,w′ ∈ Wn,m
h , and let q be an n-

dimensional input measure. Define constants M,W ∈ R+ as follows:

M = (h+ 2)
√

(M2
q + 1)(n+ 1)m, W = max {‖w‖∞ , 1} .

Then
‖fw − fw′‖L2(q) ≤ 3MW ‖w − w′‖∞ +M ‖w − w′‖2

∞ .

The remainder of this section builds up to the proof of Lemma A.17:

1. I establish a bound on the L2 seminorm of a neural network function with a single
unbiased hidden unit.

2. I establish a bound on the L2 distance between pairs of individual unbiased units
that share the same incoming or outgoing weight vector.

3. I establish a bound on the L2 distance between arbitrary pairs of individual unbi-
ased units.

4. I establish a bound on the L2 distance between arbitrary simple unbiased neural
network functions.

5. I establish a bound on the L2 distance between simple unbiased neural network
functions in terms of their parametric difference.

6. By realising simple neural networks with biases as unbiased simple neural networks
with additional units, I use the latter bound to prove Lemma A.17.
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Step 1: Seminorm bound for an individual unit

The following bound on the seminorm of a single unbiased hidden unit’s function is used
in several of the following steps.

Lemma A.18. Let q be an n-dimensional input measure. For a ∈ Rm and b ∈ Rn,

‖a tanh(bx)‖L2(q) ≤ ‖a‖2 ‖b‖2 Mq.

Proof. It suffices to show that ‖a tanh(bx)‖2
L2(q) ≤ ‖a‖

2
2 ‖b‖

2
2 M2

q:

‖a tanh(bx)‖2
L2(q) =

∫

Rn
‖a tanh(b · x)‖2

2 dq(x).

= ‖a‖2
2

∫

Rn
(tanh(b · x))2 dq(x)

≤ ‖a‖2
2

∫

Rn
(b · x)2 dq(x) (|tanh(z)| ≤ |z|)

≤ ‖a‖2
2

∫

Rn
‖b‖2

2 ‖x‖
2
2 dq(x) (Cauchy–Schwarz)

= ‖a‖2
2 ‖b‖

2
2 M

2
q.

Step 2: Distance bounds for units with shared weights

Consider two units with the same incoming weight, or two units with the same outgoing
weight, and no biases. The following results bound their L2 distance in function space.

Lemma A.19. Let q be an n-dimensional input measure. For a, a′ ∈ Rm and b ∈ Rn,

‖a tanh(bx)− a′ tanh(bx)‖L2(q) < ‖a− a′‖2 ‖b‖2 Mq.

Proof. By Lemma A.18,

‖a tanh(bx)− a′ tanh(bx)‖L2(q) = ‖(a− a′) tanh(bx)‖L2(q)

≤ ‖a− a′‖2 ‖b‖2 Mq.

Lemma A.20. Let q be an n-dimensional input measure. For a ∈ Rm and b, b′ ∈ Rn,

‖a tanh(bx)− a tanh(b′x)‖L2(q) ≤ 2 ‖a‖2 ‖b− b′‖2 Mq.

Proof. The subtraction formula for hyperbolic tangent says

tanh(φ− ψ) =
tanhφ− tanhψ

1− tanhφ tanhψ
.
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Square both sides and re-arrange to find

(tanhφ− tanhψ)2 = tanh2(φ− ψ) · (1− tanhφ tanhψ)2

≤ 4 tanh2(φ− ψ) . (|tanhφ tanhψ| < 1)

It follows that

‖a tanh(bx)− a tanh(b′x)‖2
L2(q) =

∫

Rn
‖a tanh(bx)− a tanh(b′x)‖2

2 dq(x)

= ‖a‖2
2

∫

Rn
(tanh(bx)− tanh(b′x))2 dq(x)

≤ 4 ‖a‖2
2

∫

Rn
tanh2(bx− b′x) dq(x)

= 4 ‖a‖2
2 ‖tanh((b− b′)x)‖2

L2(q)

= 4 ‖a‖2
2 ‖b− b′‖

2
2 M

2
q . (Lemma A.18)

The desired bound is recovered by taking the square root of both sides.

Step 3: Distance bound for arbitrary individual units

From the above bounds on distances between units with shared weights, I derive the
following bounds on distances between arbitrary unbiased units.

Lemma A.21. Let q be an n-dimensional input measure. For a, a′ ∈ Rm and b, b′ ∈ Rn,

‖a tanh(bx)− a′ tanh(b′x)‖L2(q) ≤ 2 ‖a‖2 ‖b− b′‖2 Mq + ‖b′‖2 ‖a− a′‖2 Mq.

Proof. The key is to decompose the difference into a difference between units with shared
outgoing weight and a difference between units with shared incoming weight. Then, the
triangle inequality and the above bounds (Lemmas A.19 and A.20) can be applied to
each component. In detail,

‖a tanh(bx)− a′ tanh(b′x)‖L2(q)

= ‖a tanh(bx)− a tanh(b′x) + a tanh(b′x)− a′ tanh(b′x)‖L2(q)

≤ ‖a tanh(bx)− a tanh(b′x)‖L2(q) + ‖a tanh(b′x)− a′ tanh(b′x)‖L2(q) (tri. ineq.)

≤ 2 ‖a‖2 ‖b− b′‖2 Mq + ‖b′‖2 ‖a− a′‖2 Mq (Lemmas A.19 and A.20)
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Step 4: Distance bound for arbitrary network functions

By pairing the units in two simple neural networks and applying the triangle equality,
I derive the following bounds on distances between arbitrary unbiased neural network
functions.

Lemma A.22. Consider a simple neural network architecture An,mh with parameter space
Wn,m

h . Let w,w′ ∈ Wn,m
h be unbiased parameters w = (a1, . . . , ah, b1, . . . , bh, 0, 0) and

w′ = (a′1, . . . , a
′
h, b
′
1, . . . , b

′
h, 0, 0). Then

‖fw − fw′‖L2(q) ≤
h∑

i=1

(2 ‖ai‖2 ‖bi − b′i‖2 + ‖b′i‖2 ‖ai − a′i‖2)Mq.

Proof. Pair off the units, use the triangle inequality, and then use the bound on the
distance between arbitrary pairs of units (Lemma A.21).

‖fw − fw′‖L2(q) =

∥∥∥∥∥
h∑

i=1

ai tanh(bix)−
h∑

i=1

a′i tanh(b′ix)

∥∥∥∥∥
L2(q)

=

∥∥∥∥∥
h∑

i=1

(
ai tanh(bix)− a′i tanh(b′ix)

)
∥∥∥∥∥

L2(q)

≤
h∑

i=1

‖ai tanh(bix)− a′i tanh(b′ix)‖L2(q) (triangle inequality)

≤
h∑

i=1

(2 ‖ai‖2 ‖bi − b′i‖2 + ‖b′i‖2 ‖ai − a′i‖2)Mq. (Lemma A.21)

Remark A.23. The above proof works with any pairing of units in the two networks.
The strongest bound therefore comes from the minimum over all pairings (equivalently,
over all unit permutations π ∈ Sh, where Sh is the symmetric group on h elements):

‖fw − fw′‖L2(q) ≤ min
π∈Sh

h∑

i=1

(
2
∥∥ai
∥∥

2

∥∥bi − b′π(i)

∥∥
2

+
∥∥b′π(i)

∥∥
2

∥∥ai − a′π(i)

∥∥
2

)
Mq.

Step 5: Distance bound for similar parameters

Lemma A.24. Consider a simple neural network architecture An,mh with parameter space
Wn,m

h . Let w,w′ ∈ Wn,m
h be unbiased parameters, and let q be an n-dimensional input

measure. Then

‖fw − fw′‖L2(q) ≤Mqh
√
nm (3 ‖w‖∞ + ‖w − w′‖∞) ‖w − w′‖∞ .
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Proof.

‖fw − fw′‖L2(q) ≤Mq

h∑

i=1

(2 ‖ai‖2 ‖bi − b′i‖2 + ‖b′i‖2 ‖ai − a′i‖2) (Lemma A.22)

≤Mq

√
nm

h∑

i=1

(2 ‖ai‖∞ ‖bi − b′i‖∞ + ‖b′i‖∞ ‖ai − a′i‖∞) (†)

≤Mq

√
nm

h∑

i=1

(2 ‖w‖∞ ‖w − w′‖∞ + ‖w′‖∞ ‖w − w′‖∞)

≤Mqh
√
nm (2 ‖w‖∞ + ‖w′‖∞) ‖w − w′‖∞

≤Mqh
√
nm (3 ‖w‖∞ + ‖w − w′‖∞) ‖w − w′‖∞ . (‡)

Step (†) uses the observation that for u ∈ Rp, ‖u‖2 ≤
√
p ‖u‖∞ and step (‡) uses the

observation that ‖w′‖∞ ≤ ‖w‖∞ + ‖w − w′‖∞ by the triangle inequality.

Step 6: The main lemma

Lemma A.24 establishes a connection between variations in parameter space and varia-
tions in function space for simple unbiased neural networks. The main lemma aims to
establish a similar connection for arbitrary networks. The result for unbiased networks is
useful because a simple biased neural network can be implemented as an unbiased neural
network with a few extra units and weights, if q is augmented to enforce a restriction on
the inputs to an additional input unit:

Proposition A.25. Consider two simple neural network architectures, An,mh , and An+1,m
h+2 .

Then for each neural network parameter w ∈ Wn,m
h , there exists an unbiased neural net-

work parameter u ∈ Wn+1,m
h+2 such that for x ∈ Rn,

fu(x, 1) = fw(x).

Proof. Let w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d) ∈ Wn,m
h . Define b′0 = (0, . . . , 0, 1) ∈

Rn+1. Construct

u =

(
a1, . . . , ah,

d

2 tanh(1)
,

d

2 tanh(1)
,

︸ ︷︷ ︸
h+2 outgoing weight vectors in Rm

(bi,ci)∈Rn+1

︷ ︸︸ ︷
b1, c1, . . . , bh, ch,

0∈Rn,1∈R︷ ︸︸ ︷
0, 1, 0, 1,

︸ ︷︷ ︸
h+2 incoming weight vectors in Rn+1

0, . . . , 0

︸ ︷︷ ︸
biases

)
∈ Wn+1,m

h+2 .
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Then for x ∈ Rn,

fu(x, 1) =
h∑

i=1

ai tanh(bi · x+ ci · 1) +
2∑

i=1

d

2 tanh(1)
tanh(0 · x+ 1 · 1)

= d+
h∑

i=1

ai tanh(bi · x+ ci)

= fw(x).

With this construction in mind, I restate and prove the main lemma.

Lemma A.17 (Uniform distance and L2 distance). Consider a simple neural network
architecture An,mh with parameter space Wn,m

h . Let w,w′ ∈ Wn,m
h , and let q be an n-

dimensional input measure. Define constants M,W ∈ R+ as follows:

M = (h+ 2)
√

(M2
q + 1)(n+ 1)m, W = max {‖w‖∞ , 1} .

Then
‖fw − fw′‖L2(q) ≤ 3MW ‖w − w′‖∞ +M ‖w − w′‖2

∞ .

Proof. Let w,w′ ∈ Wn,m
h and q an n-dimensional input measure, as above. Embed these

parameters as unbiased parameters in a larger parameter space as per Proposition A.25,
producing u, u′ ∈ Wn+1,m

h+2 respectively. Define q′ = q × δ1, where δ1 is the Dirac measure
(point mass) concentrated on 1. Then ‖fu − fu′‖L2(q′) = ‖fw − fw′‖L2(q), since

‖fu − fu′‖2
L2(q′) =

∫

Rn+1

‖fu(x)− fu′(x)‖2
2 dq

′(x)

=

∫

Rn

∫

R
‖fu(x, y)− fu′(x, y)‖2

2 dδ1(y)dq(x)

=

∫

Rn
‖fu(x, 1)− fu′(x, 1)‖2

2 dq(x)

=

∫

Rn
‖fw(x)− fw′(x)‖2

2 dq(x) (Proposition A.25)

‖fw − fw′‖L2(q) .

Therefore

‖fw − fw′‖L2(q) = ‖fu − fu′‖2
L2(q′)

≤Mq′(h+ 2)
√

(n+ 1)m (3 ‖u‖∞ + ‖u− u′‖∞) ‖u− u′‖∞ (Lemma A.24)

≤M (3W + ‖w − w′‖∞) ‖w − w′‖∞ (†)
= 3MW ‖w − w′‖∞ +M ‖w − w′‖2

∞ .
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Step (†) is based on the following three observations. First,

M2
q′ =

∫

Rn

∫

R
(‖x‖2

2 + y2)dδ1(y) dq(x)

=

∫

Rn
‖x‖2

2 dq(x) +

∫

R
y2dδ1(y)

= M2
q + 1.

Second, note that based on how u is constructed from w (by the proof of Proposi-
tion A.25), writing w = (a1, . . . , ah, b1, . . . , bh, c1, . . . , ch, d),

‖u‖∞ = max

{
‖a1‖∞ , . . . , ‖ah‖∞ , ‖b1‖∞ , . . . , ‖bh‖∞ , |c1|, . . . , |ch|,

‖d‖∞
2 tanh(1)

, 1

}

≤ max {‖a1‖∞ , . . . , ‖ah‖∞ , ‖b1‖∞ , . . . , ‖bh‖∞ , |c1|, . . . , |ch|, ‖d‖∞ , 1}
= max {‖w‖∞ , 1} .

Third, by similar reasoning, ‖u− u′‖∞ ≤ ‖w − w′‖∞.
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A.3 Functional approximate rank

Chapter 6 studies a measure of approximate degeneracy of a simple neural network pa-
rameter based on the rank of the most degenerate parameter in a small uniform neigh-
bourhood in parameter space. In this section, I investigate the following alternative
measure of approximate degeneracy for simple neural networks, based on the rank of the
most degenerate neural network function within a small L2 neighbourhood in function
space.

Definition A.26 (Functional approximate rank). Consider the simple neural network
architecture An,mh with parameter space Wn,m

h . Given a parameter w ∈ Wn,m
h , an n-

dimensional input measure q, and a positive radius ε ∈ R+, define the functional ap-
proximate rank of w, denoted frankq,ε(w), as the rank of the lowest-rank simple neural
network function within a closed L2(q) neighbourhood with radius ε. That is,

frankq,ε(w) = min
{

rank(g)
∣∣ g ∈ B̄L2(q)(fw; ε) ∩ Fn,m∞

}
.

(Recall that Definition 4.5 defines the rank of a neural network function.)

Remark A.27. Unlike the parametric approximate rank (but like the rank itself), the
functional approximate rank is a well-defined property of the neural network function
implemented by a parameter.

Below, I investigate several perspectives on the functional approximate rank, leading
to various bounds for the quantity.

1. Based on the result of Appendix A.2, nearby degenerate parameters correspond to
nearby degenerate functions. Therefore, one can bound the functional approximate
rank using a related parametric approximate rank.

2. The functional approximate rank is a kind of lossy compressibility of a neural net-
work parameter, specifying a search for a low-rank parameter that implements a
similar function. Accordingly, computing the functional approximate rank can be
viewed as a teacher–student learning problem, as in model compression (Buciluǎ
et al., 2006) or distillation (Hinton et al., 2014), and standard learning algorithms
can be used to compute bounds.

3. Neural network approximation complexity theory (e.g., Barron, 1993; Mhaskar,
1996) studies the number of units required to implement functions of a given degree
of smoothness. By applying such results to neural network functions themselves one
arrives at a bound for the functional approximate rank of a neural network function
in terms of its degree of smoothness.
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Bound by parametric approximate rank

Appendix A.2 shows that uniform neighbourhoods in parameter space can be found
implementing functions within any neighbourhood in function space. Therefore, the
parametric approximate rank provides a way to bound the functional approximate rank.

Theorem A.28 (Parametric approximate rank and functional approximate rank). Con-
sider a simple neural network architecture An,mh with parameter space Wn,m

h . Let q be an
n-dimensional input measure. Given w ∈ Wn,m

h and ε ∈ R+,

frankq,ε(w) ≤ prankδ(w),

where δ =

√
9

4
W 2 +

ε

M
−3

2
W ,M = (h+2)

√
(M2

q + 1)(n+ 1)m, andW = max {‖w‖∞ , 1}.

Proof. Let w ∈ Wn,m
h with prankδ(w) = r. Let u ∈ B̄∞(w; δ) with rank(u) = r. Then

‖fw − fu‖L2(q) ≤ 3MW ‖w − u‖∞ +M ‖w − u‖2
∞ (Lemma A.17)

≤ 3MWδ +Mδ2 (‖w − u‖∞ ≤ δ)

= ε.

The final step follows because the chosen δ is exactly the positive solution to the quadratic
equation ε = 3MWδ +Mδ2. Since fu is within ε of fw, frankq,ε(w) ≤ rank(u) = r.

Remark A.29. The functions implemented by the uniform neighbourhood may not
exhaust the L2 neighbourhood (cf. inverse stability results from, e.g., Petersen et al.,
2021). Moreover, if some or all of ‖w‖∞, Mq, and h are large relative to ε (with large
h in particular being reasonable in practice), this decreases the uniform radius, inflating
the parametric approximate rank (Proposition 6.3) and therefore loosening the bound.

Remark A.30. Theorem A.28 holds for any parameter in any architecture implementing
a given function. However, the parametric approximate rank may vary from one param-
eter to another (cf. Example 6.5). By finding an implementation with the lowest possible
parametric approximate rank (given the associated radius δ, which also depends on the
parameter) one would obtain the tightest bound available with this method.

Remark A.31. Theorem A.28 and Remark A.30 suggest a general method for computing
an upper bound on the functional approximate rank of a parameter, by (1) choosing some
functionally equivalent parameter w′, (2) computing the appropriate parametric radius δ
based on the parameter’s norm, and (3) computing a bound for prankδ(w

′) (such as by
Algorithm 6.10).

153



Bound by learning or compression

The above approach to bounding the functional approximate rank can be seen as a search
for one low-rank function within a set of nearby functions. A dual approach is therefore
to search for one nearby function within a set of low-rank functions.

If the set of low-rank functions is taken as the parameter space of a simple neural
network architecture with a reduced number of hidden units, then the latter search can
be viewed as a teacher–student learning problem. Given a neural network parameter
w ∈ Wn,m

h , and some prospective functional approximate rank bound r, proceed as
follows.

1. Create a data set by sampling a large number of inputs from the input measure,
and computing the corresponding outputs according to fw.

2. Conduct a learning process to search Wn,m
r for a low-loss parameter w? ∈ Wn,m

r

using the mean squared error loss function and the data set from step (1). Any
standard learning algorithm can be used.

3. The mean squared error is an estimate of the squared L2 distance between fw and
fw? . Therefore, if the learning process found w? with loss less than ε2, then fw? is
(according to the estimate) within the L2 neighbourhood of fw with radius ε. It
follows that r—indeed, rank(w?)—is an upper bound on the functional approximate
rank frankq,ε(w) (according to the estimate).

4. If instead the learning process found w? with loss greater than ε2, one cannot
necessarily conclude that r is not an upper bound on the functional approximate
rank frankq,ε(w). There may be low-loss parameters that the learning algorithm
failed to find. Therefore, in this case, do not report a bound.

Remark A.32. The above procedure for bounding the functional approximate rank
is similar to the techniques of model compression (Buciluǎ et al., 2006) or distillation
(Hinton et al., 2014), by which one attempts to learn a small neural network that mimics
the function of an existing large neural network. Accordingly, these existing techniques
can be interpreted as attempts to compute the functional approximate rank of the large
neural network.
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Bound by approximation complexity

Related to functional approximate rank is the theory of neural network approximation
complexity. This subfield of neural network geometry studies the relationship between
the number of hidden units and the achievable degree of approximation to an arbitrary
function, in terms of properties of the function (see, e.g., Barron, 1993; Murata, 1996;
Mhaskar, 1996). Results from this field often conform to the pattern “given a function f ,
for h ∈ N+, there exists a parameter wh ∈ Wn,m

h such that ‖f − fwh‖L2(q) ≤ Q/hp, where
Q > 0 is some measure of the smoothness of f and p > 0 is some order of approximation.”
Thus these results quantify the rate at which the ability to approximate functions of a
given smoothness class improves with an increase in the number of hidden units available.

If neural network functions themselves satisfy the assumptions imposed by such results
on the approximated functions, then such a rate of approximation allows one to calculate
a number of hidden units above which there must be a neural network function within
a given L2 radius. This can be used to derive a bound on the functional approximate
rank, as follows.

Lemma A.33 (Approximation complexity and functional approximate rank). Consider
the simple neural network architecture An,mh with parameter space Wn,m

h . Consider a
parameter w ∈ Wn,m

h , an n-dimensional input measure q, and a positive radius ε ∈ R+.
Suppose there exist some constants Q, p ∈ R+ such that for all r ∈ N+ there exists
wr ∈ Wn,m

r such that

‖fw − fwr‖L2(q) ≤
Q

rp
.

Then

frankq,ε(w) ≤
⌈(

Q

ε

)1
p

⌉
.

Proof. Let r =
⌈(

Q
ε

)1
p

⌉
. Then r ∈ N+ since Q, p, ε ∈ R+. It follows by the assumption

that there exists wr ∈ Wn,m
r for which

‖fw − fwr‖L2(q) ≤
Q

rp
=

Q(⌈(
Q
ε

)1
p

⌉)p ≤
Q((
Q
ε

)1
p

)p = ε.

Thus fwr ∈ B̄L2(q)(fw; ε). Then, noting rank(wr) ≤ r (Proposition 4.6),

frankq,ε(w) ≤ rank(fwr) = rank(wr) ≤ r =

⌈(
Q

ε

)1
p

⌉
.

Remark A.34. One always has frankq,ε(w) ≤ h for w ∈ Wn,m
h (cf. Proposition 6.2(iii)).

Whether Lemma A.33 leads to a non-trivial bound depends on the smoothness of fw and
the order of approximation.
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B.4 List of symbols

Grouped by topic: (1) some basic mathematical objects; (2) simple neural networks
and neural network geometry; (3) computational complexity theory; (4) measure theory,
function space, and functional approximate rank (from Appendix A).

Symbol Definition Description

∅ – Empty set

N – (Non-negative) natural numbers N = {0, 1, 2, . . .}
N+ – Positive natural numbers N+ = {1, 2, . . .}
R – Real scalars

R+ – Positive real scalars R+ = {x ∈ R |x > 0 }
Rp – p-dimensional real vectors

V(·) – Zero locus of a given collection of polynomials

Sh 3.31 Symmetric group on {1, . . . , h} (set of permutations)

id – Identity permutation (also identity activation function)

{−1,+1}h 3.34 Set of sign vectors of dimension h

|S| – Cardinality (number of elements) of set S (see also |s|)
R ⊂ S – R is a subset of S (including the case R = S)

R ( S – R is a proper/strict subset of S (R ⊂ S and R 6= S)

|s| – Absolute value of scalar s (see also |S| and abslex(v))

‖v‖∞ 3.1 Uniform norm of vector v

‖u− v‖∞ 3.2 Uniform distance between vectors u and v

B̄∞(v; ε) 3.3 Closed uniform neighbourhood of v with radius ε ∈ R+

� (≺,�,�) 3.4 Lexicographic order on Rp

signlex(v) 3.7 Lexicographic sign of vector v

abslex(v) 3.9 Lexicographic absolute value of vector v

id §2.2:1 Identity (activation) function (also identity permutation)

tanh §2.2:2 Hyperbolic tangent (activation) function

relu §2.2:3 Rectified linear unit (activation) function

An,mh 3.11 Simple neural network architecture with n input units, m
output units, and h hidden units

Wn,m
h 3.12 Space of simple neural network parameters for An,mh

w ∈ Wn,m
h 3.13 Simple neural network parameter

fw 3.18 Simple neural network function implemented by w
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Symbol Definition Description

Fn,mh 3.18 Family of simple neural network functions for An,mh
Fn,m∞ 3.20 Extended family of simple neural network functions

Tπ 3.32 Simple neural network permutation based on π ∈ Sh
Tσ 3.35 Simple neural network negation based on σ ∈ {−1,+1}h

F[w] 3.38 Functional equivalence class of parameter w

R[Wn,m
h ] 3.40 Reducible region of parameter space Wn,m

h

I[Wn,m
h ] 3.41 Irreducible region of parameter space Wn,m

h

rank(w) 4.1 Rank of simple neural network parameter w

rank(f) 4.5 Rank of simple neural network function f

Rn,m
h 4.7 Family of fixed-rank simple neural network functions

Br[Wn,m
h ] 4.18 Bounded rank region of rank r of parameter space Wn,m

h

ΞR(h, k) 4.20 Set of reduction traces of length k on h units

ΞC(h, r) 5.12 Set of canonicalisation traces of order r on h units

ρ 5.19 Piecewise linear path in a subset of the parameter space
(the subset is implicit)

! 5.20 Piecewise linear path connectivity relation on a subset of
the parameter space (the subset is implicit)

prankε(w) 6.1 Parametric approximate rank of w given radius ε ∈ R+

O(f(n)) – Class of problems solvable within time asymptotically
equivalent (or less) than f(n) given instances of size n

P §3.4 Class of polynomial-time solvable decision problems

NP §3.4 Class of decision problems for which a “yes” output (ac-
companied by a certificate) is verifiable in polynomial time

X
P−→ Y 3.51 Decision problem X is (polynomial-time) reducible to de-

cision problem Y

SAT 3.49 Boolean satisfiability

xSAT 3.56 Restricted Boolean satisfiability (see also Theorem 3.58
defining 3-SAT, planar 3-SAT, and planar 3-SAT3̄)

UPP 6.15 Uniform point partition

UPC 6.17 Uniform point cover

usgCP 6.24 Clique partition for unit square graphs

UPPp 6.37 Uniform point partition in Rp (as opposed to R2)

PAR 6.41 Parametric approximate rank (decision variant)
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Symbol Definition Description

‖x‖2 A.1 Euclidean norm of vector x

‖x− y‖2 A.2 Euclidean distance between vectors x and y

B(Rn) A.3 Borel σ-algebra on Rn

q A.3 Input (probability) measure on Rn

∫
Rn f(x) dq(x) A.5 Integral of (q-integrable) function f with respect to q

L2(q,Rn,Rm) A.8 Space of functions from Rn to Rm that are square inte-
grable with respect to input measure q

‖f‖L2(q) A.12 L2(q) seminorm of a (square-integrable) function f

‖f − g‖L2(q) A.13 L2(q) distance (semimetric) between f and g

B̄L2(q)(f ; ε) A.15 Closed L2(q) neighbourhood of f with radius ε ∈ R+

M2
q A.16 Raw second moment of input measure q

Mq A.16 Square root of raw second moment M2
q

frankq,ε(w) A.26 Function approximate rank of simple neural network pa-
rameter w given input measure q and radius ε ∈ R+

dae – Ceiling bracket: least integer larger or equal to a ∈ R
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