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1. Introduction

Reinforcement learning concerns the design of algorithms that learn to make better decisions
from experience. This broad framework permits many approaches and finds diverse applica-
tions, from systems for game-playing and robotic control to models of animal learning [1].

The value-based approach to reinforcement learning is as follows: First, observe the
outcomes of decisions in various situations. Then, estimate a value function capturing the
average long-run consequences of each decision in each situation. With this function, make
decisions based on the estimated value of each available option in the current situation [1].
The ‘value’ in ‘value function’ refers to expected value—one averages out random variation
while estimating long-run consequences. Accordingly, recent work [2] proposes an extension
to value-based reinforcement learning, asking: If one estimated the probability distribution
over long-run consequences itself (rather than its average), would that lead to more effective
learning? This distributional paradigm shift reveals a large space of new reinforcement
learning algorithms for exploration, with early experiments yielding impressive empirical
performance [2–9].

In this review, we attempt to orient ourselves in this new fertile landscape, seeking
directions towards realising the potential of distributional reinforcement learning. We begin
in section 2 by summarising the fundamentals of the traditional value-based paradigm. We
then outline its distributional extension in section 3, and discuss its particular empirical
and theoretical properties. In section 4, we review several recently-proposed distributional
algorithms. We conclude by highlighting paths for further investigation.
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2. Value-based reinforcement learning

We review the fundamental notions informing our discussion of value-based and distributional
methods. See Sutton and Barto [1], on which this section is based, for a more comprehensive
and formal introduction to reinforcement learning.

In reinforcement learning (RL), one models a sequential decision-making task with three
entities: An agent, its environment, and a reward function. In each of a sequence of inter-
actions, the agent observes the current state of the environment, and selects an available
action using an action-selection policy. In response, the environment transitions to a new
state. Finally, the reward function assigns a numerical reward to the action and transition.
Importantly, each step (the action selection, the state transition, and the reward assessment)
may involve randomness.

RL algorithms aim to produce action-selection policies that maximise, in expectation,
a sum of the rewards assigned to each interaction in an interaction sequence. This total
cumulative reward is called the return. With it, one can express succinctly the goal of RL
algorithms: Find action-selection policies achieving high expected return.
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Figure 1: Reinforcement learning (RL): Find an action-selection policy (a) leading to interaction
sequences (b) that, according to the reward function (c), accumulate high return.

A common approach for finding return-maximising policies is to estimate (from sample
interactions) the conditional expected value of the return1 given each environmental state and
prospective action. This is the so-called value function: A function with states and actions
as input, and the corresponding conditional expected return value as output. Return values
inherently account for the long-term consequences of actions. Thus, with a value function, a
policy can be comparatively simple—a ‘greedy’ policy selecting the maximum-value action
given the environment’s current state often suffices.

Value functions come in different sizes, and one distinguishes several learning settings :
In environments with a finite number of states and available actions, one may separately
estimate the function’s output for each possible input; as if filling in a table. This is the so-
called tabular setting. Where the number of states or actions is infinite (or intractable), one
must resort to estimating a finitely-parametrised approximation of the value function with
regression techniques. In particular, with a multi-layered artificial neural network for non-
linear function approximation, one speaks of deep reinforcement learning. However, linear
function approximators are often sufficient and more amenable to theoretical analysis [1].

1Though return is a function of interaction sequences, not individual interactions, one can nevertheless
efficiently estimate return using so-called temporal difference learning, an instance of stochastic semi-gradient
descent. The details are beyond our scope—see [1].
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Figure 2: Value function estimation settings: Tabular (a, b): estimating finite functions (tables).
Non-tabular (c–f): for infinite functions, in which one represents states and actions as vectors and
one learns finitely-parametrised linear (c, d) or non-linear (e, f) transformations of these.

3. Reinforcement learning with distributions

In recent work, Bellemare et al. propose that algorithms should estimate the conditional
probability distribution of the return for each state and action, instead of estimating its
expected value [2]. Thus, in so-called distributional2 RL, the traditional value function is
replaced by a function from states and actions to conditional return probability distributions.
Given these return distributions, one may still compute averages for action selection. How-

ever, it appears that the estimation process benefits from adopting this richer learning target,
unlocking improved performance. To better understand the potential of the distributional
paradigm, we discuss these and other uniquely distributional properties below.
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Figure 3: Distributional reinforcement learning: Estimate the conditional probability distribution
of the return as a function of state/action combinations, rather than its expected value (dotted).

2Distributional reinforcement learning must not be confused with distributed reinforcement learning,
wherein one distributes learning algorithm execution over multiple computers. The distribution of concern
is rather a probability distribution. Of course, one may distribute distributional reinforcement learning [4].
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3.1. Distributional performance Early distributional algorithms (viz. [2–9], reviewed
in section 4) consistently match and out-perform state-of-the-art value-based algorithms
on multiple standard benchmarks. Each benchmark comprises a diverse suite of RL envi-
ronments. For example, most of these algorithms were evaluated on the challenging and
competitive Atari 2600 benchmark [10], comprising dozens of different arcade games. More-
over, most of these experiments involved large-scale implementations in the complex deep
RL setting. This broad empirical trend supports the potential of the distributional extension
of value-based RL as a promising path towards more effective RL algorithms.

3.2. Distributional analysis Despite the abundant and impressive empirical support for
their efficacy, no work has yet provided a principled explanation of the exact mechanism
by which distributional algorithms improve over their value-based counterparts. At best,
Bellemare et al. propose and informally justify some potential mechanisms [2]. However,
their proposals are yet to receive even direct empirical investigation.

Complicating matters, further analysis shows that some distributional algorithms behave
exactly equivalently to existing value-based algorithms in the tabular and linear function-
approximation settings [11]. This leaves one with the historically difficult task of analysing
the non-linear function approximation setting (cf. [1]) for a theory of how estimating distri-
butions helps learning at all.

Moreover, it’s not obvious that distributional estimation will always stabilise near the true
distribution function—one must prove the convergence of each distributional algorithm. So
far, many tabular distributional algorithms have accompanying convergence proofs. Notably,
variations of Bellemare et al.’s original algorithm are convergent in both the tabular [12] and
linear function-approximation [13] settings. Current results do not satisfactorily transfer
from one algorithm to another, however. A general result on the convergence of distributional
algorithms could accelerate exploration.

3.3. Distributional flexibility In work preceding the recent wave of empirical results,
Morimura et al. advocate another benefit of learning return distributions: Given distribu-
tions, one can readily implement action-selection policies embodying alternative risk prefer-
ences [14, 15]. We elaborate below.

Pursuing average return ‘at all costs’ may lead to algorithms accepting rare but ruinous
outcomes that are otherwise avoidable (with small concessions in average return). In many
practical applications of RL, one seeks to control exposure to this kind of risk. Hence, one
may prefer actions selected for alternative statistical measures such as value at risk or con-
ditional value at risk [16]. While such measures may not form viable learning targets alone,
they can readily be derived from the distributional information learned by distributional al-
gorithms [14–16]. Therefore, Morimura et al. view distributional RL as a unifying framework
for implementing various risk-sensitive RL algorithms.

Notably, Morimura et al. eschew formal treatment of the effect of alternative action-
selection policies on learning dynamics [14, 15]. Considering the small scale of their experi-
ments, the algorithmic safety of this risk-mitigation strategy requires justification. More re-
cent work involving larger-scale experiments [6] echoes this uncertainty, finding unexplained
impacts of varying risk preferences. Therefore, this dimension of distributional reinforcement
learning should be subject to further empirical and theoretical investigation.
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4. Representations for distributional algorithms

We come to the task of representing the distributions central to distributional algorithms. In
general, a probability distribution is an infinite object. Therefore, one can only estimate some
finite parametrisation of such distributions. There are myriad ways to parametrise and rep-
resent distributions. For each representation, there may be several estimation procedures—
each a potential distributional RL algorithm. Here we review several recently-proposed
representations, seeking promising directions for further exploration.

(a) (b) (c)

Legend: True value distribution Representation of value distribution

1% 50% 99%

Figure 4: Example distribution representations: (a) Parametric (Gaussian mixture model, 2 com-
ponents); (b) Categorial (21 discrete categories); (c) Quantiles (11 quantiles, 50%-quantile shown).

4.1. Parametric approaches A simple way to finitely represent distributions is to re-
strict oneself to parametrised families of distributions. For example, the family of Gaussian
probability distributions is indexed by two parameters: Mean and variance. A parametric
distributional algorithm estimates such parameters as functions of states and actions.

Morimura et al. derive a distributional algorithm for general parametrised families, such
as the Gaussian or Laplacian families [15]. More recent works derive distributional algorithms
for the expressive family of mixtures of Gaussians [4, 8], each validating this approach in
large-scale experiments. Currently, these approaches all lack thorough convergence analyses.
Moreover, the latter works seem to have under-appreciated the relevance of the former. By
combining or comparing their results, it may be possible to reach general conclusions about
parametric distributional algorithms.

4.2. Categorical approaches Alternatively, one may finitely approximate a general dis-
tribution by bucketing its values into discrete ‘categories’. This leads to the categorical
approach to distributional RL of Bellemare et al. [2], in which one learns a function captur-
ing the probabilities for returns in each of the various categories.

Categorical distributional RL has demonstrated impressive performance [2–4] and yielded
more theoretical results than other approaches [11–13]. However, the need to specify cate-
gories in advance is a salient limitation since the nature of the return distributions is rarely
known—or static—in practice. More advanced algorithms with adaptive categories [9] could
be a path forward.
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4.3. Quantile-based approaches The p-quantile of a distribution is the value below
which the total probability density is p. A suite of p-quantiles captures the approximate
shape of a distribution. Indeed, the full set of p-quantiles forms the quantile function, or
inverse cumulative distribution function, perfectly characterising a distribution. Quantile-
based distributional algorithms estimate quantile suites, or even the quantile function itself,
as a function of states and actions. The results are two of the most empirically impressive
distributional algorithms explored to-date [5, 6].

However, it appears these works have not adequately addressed the existing literature on
the broader quantile regression task, despite its relevance. In particular, crossing quantile
curves [17, 18] may also plague quantile-based distributional RL algorithms.

4.4. Expectile-based approaches Expectiles are summary statistics generalising the ex-
pected value in the same way as quantiles generalise the median [19, 20]. In particular, a
suite of expectiles characterises a distribution, leading to expectile-based distributional RL.

In the first study of expectile-based algorithms, Rowland et al. demonstrate their ex-
cellent learning capacity, even compared to quantile-based approaches [7]. Perhaps this is
not surprising—the regression literature knows expectiles as a competitive alternative to
quantiles [17,18], even for estimating quantiles themselves [16, 21].

A salient bottleneck in Rowland et al.’s algorithm is the expensive imputation step, in
which one converts a suite of expectiles into a matching sample. Here, Rowland et al.
resort to numerical optimisation. However, more efficient imputation may be achievable
using insights from the wider expectile literature [19, 22]. Combined with the intriguing
performance results, this highlights expectile-based methods as particularly promising for
further investigation.

4.5. On the horizon There are, of course, distributional representations beyond those
discussed above. For example, Morimura et al. explores a bespoke algorithm for estimat-
ing conditional cumulative distribution functions [14], and Farahmand lays the theoretical
groundwork for a distributional algorithm representing return distributions in the frequency
domain [23]. The horizon of possible distributional algorithms is yet to be fully explored.

5. Conclusion

Distributional RL is a nascent extension of value-based RL with intriguing potential based
on a robust trend of impressive empirical performances. So far, analysis has centred around
individual algorithms, particularly Bellemare et al.’s original categorical algorithm and its
variations. We advocate for existing and new analyses to be carefully extended towards
encompassing the myriad available distributional representations.

Of the many available representations, quantile- and expectile-based methods show par-
ticularly strong potential in terms of their performance and representation capacity. A spe-
cific direction for future work aiming to realise the potential of the distributional paradigm
is to incorporate existing knowledge of quantile and expectile regression into more robust
and efficient distributional algorithms. There is also room for wider exploration in the space
of distributional representations itself—a single best representation is far from clear.
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