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1. Introduction

Reinforcement learning (RL) is a framework for algorithms that leverage machine learning to
solve decision-making problems [1]. RL is applicable in myriad important technological do-
mains, from low-level robotic motor control [2] to high-level strategic control of autonomous
systems such as self-driving vehicles [1,3]. Thus, improving the efficiency and efficacy of RL
algorithms entails wide-ranging practical benefits.

In this research plan, we consider establishing one such improvement after excising an
efficiency bottleneck from an otherwise-leading algorithm. The remainder of this section
contextualises and motivates our approach within the RL field, and states our research
question. In section 2, we detail our proposed methods of investigation and analysis for
validating our hypothesis. We conclude this short plan in section 3 by summarising the
hypothetical contribution of our innovation.

1.1. Goals of the field: Efficacious and efficient reinforcement learning

The leading evaluative dimension for RL algorithms is efficacy. Given experience interacting
in a decision-making environment coupled with some notion of ‘reward’, efficacious RL
algorithms are those whose learned behaviours lead to highly ‘rewarding’ consequences [1]'.

A second dimension weighs in appraising RL algorithms for practical use: One seeks
efficiency alongside efficacy. For example, an algorithm may outpace another by requiring
less computational effort or time to process each interaction during training.

Distributional RL (DRL) is a recent and promising paradigm for approaching RL [4,5].
DRL algorithms learn a reward probability distribution given each decision-making situation,
and then make decisions based on these distributions [4]. As the author has reviewed [5], early
DRL algorithms (for example [2,4,6-8]) have consistently matched or surpassed previous
state-of-the-art RL algorithms in efficacy with, predominantly, comparable efficiency—a clear
improvement. Moreover, in this nascent paradigm, refining these initial approaches may yet
reveal further improvements [5]. We seek just such a refinement.
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Of various initial approaches, Rowland et al.’s expectile-based DRL algorithm shows par-
ticularly strong efficacy [5,8]. Its eponymous expectiles are statistics for summarising prob-
ability distributions, analogous to the well-known quantiles [9,10]. The regression literature
knows expectiles as well-suited for learning probability distributions [5,11-14]. With Row-
land et al.’s empirical results, this supports pursuing expectile-based DRL algorithms.

Despite its leading efficacy, Rowland et al.’s algorithm lags competitors in efficiency
due to a critical bottleneck. To process each unit of experience, the algorithm must solve
a sub-problem called expectile imputation. Here, Rowland et al.’s algorithm resorts to a
numerical optimisation routine [8,15]. This general-purpose routine solves the sub-problem,
but without taking advantage of its structure, and at significant computational cost?.

A variant of Rowland et al.’s algorithm with a more efficient solution to this sub-problem
could become a leading performer among DRL algorithms in both efficacy and efficiency.
Below, we review the expectile imputation sub-problem and consider tailored replacements
for Rowland et al.’s naive numerical optimisation sub-routine.

2. Removing the expectile imputation bottleneck

Expectile-based DRL involves summarising probability distributions with collections of ez-
pectiles (Figure 1a). However, Rowland et al. establish that such expectile summaries are
inconvenient for incorporating decision-making experiences during training [8]. Thus, their
expectile-based DRL algorithm converts expectile summaries into a more convenient form—a
sample of values with a matching distribution—before assimilating each unit of experience.
This conversion sub-problem is an instance of so-called ezpectile imputation [8] (Figure 1b).

a. Expectile b. Expectile
summamsatz zmputatwn

Distribution Expectiles Sample

Figure 1: a. Like quantiles, a set of expectiles summarises a probability distribution. b. Ezpectile
imputation problem: Given such a set of expectiles, find a sample with a matching distribution.

We consider averting this conversion bottleneck in Rowland et al.’s algorithm. By retain-
ing most of their algorithm, but replacing their expensive numerical optimisation sub-routine
with an algorithm that exploits the expectile imputation sub-problem’s structure, we should
achieve a more efficient but equally efficacious DRL algorithm.

Work from outside DRL may reveal such an expectile imputation algorithm. For exam-
ple, Schnabel and Eilers [16] present an algorithm for an equivalent problem (their ‘non-
parametric density estimate’ is our ‘sample of values’). Additionally, Newey and Powell [9]
analytically connect a distribution’s expectile summary with its density function, an insight
that may lead to a second algorithm. The relevance of this work has not yet been adequately
acknowledged within DRL [5, 8], which leads to our research question:

Research question: Do these results [9,16] (1) represent more efficient ezpectile
imputation algorithms, (2) thereby giving us more efficient but equally efficacious
expectile-based DRL algorithms, compared to Rowland et al.’s algorithms [8]?

2Rowland et al. report training their algorithm in comparable time to competing algorithms, but they par-
allelise training across multiple computers [8]. With fixed available hardware, training time would increase.
Thus, we consider this algorithm less efficient despite the equivalent absolute training time.



2. Methods

Mirroring our two-part question, we separate our study into two stages: First, we will validate
our alternative algorithms for the expectile imputation sub-problem (section 2.1). Second,
we will study the resulting modified expectile-based DRL algorithm (section 2.2).

This division is prudent: The expectile imputation sub-problem is self-contained, so we
can establish our new algorithms independently of the complicating DRL context. Moreover,
as is common in RL (for example [4,7,8]), we may thereby demonstrate the conceptual
feasibility of our approach before committing the significant computational resources our
second stage demands. This subsequent investment is still necessary, however, in line with the
field’s practical expectations [1,6]. Below, we outline our proposed methods for investigating
each stage and for analysing the results of these investigations.

2.1. Tailored expectile imputation algorithms

Our two alternative expectile imputation algorithms are a new algorithm based on Newey and
Powell’s theorem [9, Theorem 1liv] and the algorithm from Schnabel and Eilers [16]. In our
first stage, we seek to establish (1) that these algorithms indeed solve the expectile imputation
problem, and (2) their improved efficiency over Rowland et al.’s numerical baseline [8].

Establishing correctness: Before comparing our algorithms’ efficiency we must establish
that they indeed solve the expectile imputation problem. Fortunately, mathematical deriva-
tions of our algorithms’ behaviour should be within reach: Our algorithms are already based
on analytical results that—alongside the existing theory of expectile statistics [9, 10, 17]—
present a convenient starting point. Therefore, we will pursue proofs of correctness as a first
step in establishing our algorithms.

After securing this analytical support, we may still desire empirical validation of our
algorithms’ correctness. However, any practical issues should emerge during our empirical
evaluation of their efficiency, which we consider below.

Establishing improved efficiency: Unfortunately, analytical tractability may not extend
to our efficiency investigation. Our baseline, a general-purpose numerical optimisation rou-
tine, permits conservative analysis [18, as cited in 19], but may resist yielding results relevant
to our special case. Since we must compare against this baseline, theoretical run-time bounds
on our alternatives will be fruitless. Therefore, we will eschew formal analysis and instead
perform a simple empirical run-time experiment.

Our investigation must begin with a faithful reproduction of Rowland et al.’s baseline
routine—a crucial step in performing a meaningful comparison. We will closely follow the
details in the works involving this baseline [8,15] in our implementation.

We will then measure the run-time of our baseline and our two alternative algorithms. For
a robust comparison, we will fix the available hardware and aggregate results from multiple
trials. To elicit any hardware-independent run-time trends, and to ensure relevant results,
we will explore a range of input and output parameters typical of Rowland et al.’s DRL
experiments [8]. We will synthesise inputs using Gaussian mixture modules—an expressive
distribution family which itself underpins competing DRL algorithms [2,20]. Here we di-
verge from Schnabel and FEilers” precedent: They demonstrate their algorithm on real-world
regression data [16]. However, they emphasise correctness, whereas we require a flexible data
source for our wide-ranging run-time experiments. Furthermore, RL works often establish
conceptual results like those of our first stage experiments on similar ‘toy’ data [1,7,8].



Analysis: From our correctness analysis, we seek a guarantee that our algorithms always
give suitable outputs. A derivation as in Rowland et al.’s baseline [8] would suffice. We
would permit typical mathematical assumptions, such as indefinitely large input sets, if our
empirical efficiency investigation reveals no behavioural problems given typical parameters.

From the efficiency experiments themselves, we seek a clear speed-up over our baseline,
such as an order-of-magnitude improvement over the full parameter range. Such a resounding
improvement seems possible due to the baseline’s naivety [8]. This would positively answer
the first part of our research question and position us to resolve the second in kind.

However, while we have isolated the expectile imputation sub-problem, the broader DRL
context remains our main motivating focus: Ultimately, we need improvements for the inputs
these algorithms would face within a DRL algorithm, during training. The nature of such
inputs is unclear a priori—we require richer experiments, to which we now turn.

2.2. Efficient expectile-based distributional reinforcement learning

Having established alternative algorithms for solving the expectile imputation sub-problem,
we will restore the full DRL context, and address the second part of our question. In par-
ticular, we will investigate (1) whether Rowland et al.’s DRL algorithm sustains its efficacy
when modified with our replacement expectile imputation algorithms, and (2) whether the
expectile imputation algorithms sustain their speed-up in the DRL setting.

Both aspects of this investigation begin by carefully reproducing Rowland et al.’s DRL
algorithm following published details [8], to establish our baseline and host our modifications.
Using Drummond’s terminology [21], such a ‘reproduction’ is harder than a mere ‘replica-
tion” based on Rowland et al.’s code, but this code is unavailable, and a first independent
confirmation of their efficacy results would itself contribute to the emerging DRL field.

Establishing equivalent efficacy: Following Rowland et al. [8], we will employ the popular
Atari 2600 environment suite [22,23] to measure efficacy. This benchmark contains dozens
of decision-making tasks based on video games from the classical console, and is suitable for
evaluating the efficacy of RL algorithms because these games are, by design, both difficult
for humans and diverse [22,23]. While we could adapt our algorithm to other benchmark
environment suites, this choice will also allow direct comparison to Rowland et al.’s results.
We will follow the best practices laid out by Machado et al. [23], as followed by Rowland
et al. and similar works [4,6-8]. This includes tuning the parameters of our baseline and
modified algorithms on just 6 games before evaluating a final choice of parameters on a
gauntlet of 57 games [23], and computing the progression of human-normalised scores [24]
throughout training (the so-called learning curves) to measure and report our algorithms’
efficacy [23]. Following these standards will help us compare to Rowland et al.’s results to
validate our reproduction, and will help others compare to our results in the future [23].

Establishing improved efficiency: To investigate efficiency, we will run separate tim-
ing experiments with our baseline and modified algorithms, using their most efficacious
parametrisations, and exploring a range of Atari 2600 games and training stages. Partially
decoupling our efficiency and efficacy experiments (rather than timing our whole efficacy
experiments) is pragmatic: Evaluating efficacy involves simulating dozens of games, each
for millions of frames, allowing each algorithm enough time to demonstrate flexible learning
ability [22,23]. So much time would be redundant in measuring efficiency, even in diverse
situations. Conversely, we must serialise our baseline’s expensive expectile imputation steps
to measure efficiency, but we can otherwise parallelise these steps to speed up training [8].



Analysis: To compare the efficacy of different RL algorithms across multiple games, one
usually compares a robust summary of scores such as their median [4,6-8]. This accounts
for each algorithm having different strengths and weaknesses, while discounting outlying
scores from overly easy or hard games [6]. However, we face a unique situation in com-
paring algorithms with hypothetically identical behaviour, and therefore performance, in all
games—aggregating results might even obscure differences. We will report these summaries
to facilitate future comparisons [23], but to answer our question, we will instead perform
a detailed comparison of the per-game learning curves for our baseline and modified algo-
rithms. If these learning curves ‘line up’, then we can conclude that our modifications have
preserved the algorithm’s efficacy.

In contrast, we expect stark differences between our algorithms’ efficiency. Echoing
section 2.1, we seek a clear speed-up over our baseline in all games, though perhaps shy
of an order-of-magnitude improvement, since other components may begin to dominate the
DRL algorithm’s run-time. Instead, we would consider reaching the efficiency of competing
DRL algorithms (for example [4,6,7,25]) sufficient improvement to affirm our question, since
our evaluation involves diverse and representative learning situations.

In summary, if our algorithms indeed display equivalent efficacy with increased efficiency,
we will have successfully excised Rowland et al.’s bottleneck, affirming our research question,
and achieving state-of-the-art performance in both of our crucial dimensions.

3. Contribution

We conclude by speculating on some likely contributions of our work. If we establish an
alternative expectile imputation algorithm based on Newey and Powell’s theorem [9], this
first-stage result may be a contribution in its own right, with potential applications outside
DRL as illustrated by Schnabel and Eilers [16]. Our first-stage results may also highlight
the connections between the new field of DRL and the existing regression literature, which,
as the author has argued, has not yet been sufficiently acknowledged [5].

Turning to the full DRL context, if we reproduce Rowland et al.’s baseline results [8],
this will constitute a valuable first independent validation of the expectile-based approach to
DRL [5,21]. If we additionally succeed in establishing a more efficient but equally efficacious
expectile-based DRL algorithm, this algorithm would reach the state of the art in RL by
eliminating the main drawback of Rowland et al.’s contribution [5].

DRL is still young, and a competing algorithm may eventually emerge ahead of our
successful approach [5]. In any case, our improvements should reduce the computational
cost of further experimentation with future expectile-based DRL algorithms, as long as they
still involve expectile imputation. Furthermore, by following Machado et al.’s conventions
for evaluating efficacy in the Atari 2600 environment suite, we will facilitate comparisons to
our results in future work [23]. Our work may, thereby, continue to help this new paradigm
advance towards its exciting potential.
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