
COMP90051 Statistical Machine Learning Project 1 Report

Alice Johnson, Marvin Lai, Matthew Farrugia-Roberts

Semester 2, 2019

Introduction

For our class project we develop a system for automated
authorship attribution of Twitter messages (‘tweets’). We
are given a dataset of 328,932 tweets of known authorship,
and 35,437 anonymous tweets to be attributed to one of
9,297 authors as part of a class Kaggle competition.1

Existing work on tweet authorship attribution[1,6,7] frames
the problem as either (1) supervised multi-class classifica-
tion, training models on labelled (known-author) tweets to
predict the label (author) of test tweets, or (2) an author
profiling task, collating all tweets from an author into a sin-
gle profile and attributing each anonymous tweet by finding
the closest profile under some distance metric. Moreover,
two broad classes of features are established as effective:
‘Static’ features are hand-crafted features capturing various
stylometric aspects of writing; and ‘dynamic’ features are
lower level patterns automatically determined from data.

Dynamic features are ideal for their simplicity and for
their robustness to our informal, non-standard and multi-
lingual text. We explore various dynamic feature classes in-
cluding byte, character, word, and flexible pattern n-grams.

Our dataset is unique in having an extremely large num-
ber of authors with few training tweets per author: Over
90% of our authors have fewer than 50 tweets, and these
tweets make up over 70% of the dataset. 50 is the fewest
tweets-per-author explored in existing work (to our knowl-
edge). Multi-class classification algorithms may struggle to
generalise after seeing so few examples for most classes.

After seeing initially promising results from a profile-
based baseline, we elect to focus on deeply exploring profile-
based methods, in the hope that these will scale more ca-
pably to our ‘extreme’ dataset. We explore a wide range
of profile-based models from recent literature. Furthermore,
we reformulate existing distance metrics to make them com-
putationally tractable on our large dataset, and we introduce
a new distance metric of our own design.

Feature classes

We explore the appropriateness of various dynamic feature
classes for our authorship attribution task, including char-
acter, byte, and word n-grams, for n = 2, 3, 4, 5, 6.

1https://www.kaggle.com/c/whodunnit, ranking 3rd of 162 teams
in public and private evaluation (team name the shrunken stardust).

We also explore flexible pattern n-grams, dynamic feature
classes capturing stylometric information such as patterns in
function-word use not captured by regular word n-grams[7].
Flexible patterns are word n-grams where words appear-
ing above a certain frequency in the corpus (‘high-frequency
words’, or HFWs) are retained, but words appearing below
a certain frequency (‘content words’, CWs) are conflated.
A flexible pattern n-gram is a sequence of n HFWs, each
separated by zero or more CWs.

We optionally pre-process tweets, tokenising at word and
punctuation boundaries and normalising infrequent tokens
(e.g. dates, times) before extracting n-gram features. We
compare this with extracting n-grams directly from raw text.

Learners

We explore several profile-based models for authorship at-
tribution. Each model defines an author ‘profile’, and a dis-
tance metric d between these profiles and new tweets. We
learn profiles for a set A of candidate authors from a corpus
of tweets, and then predict the author of each new tweet t
as arg mina∈A d(a, t). The models are as follows.

Common N-Gram (CNG) The CNG model[3] defines
an author’s profile as the normalised frequencies of the L
most common n-grams across all of the author’s tweets,
where L is a hyper-parameter. dcng measures distance be-
tween author a and tweet t as

dcng(a, t) =
∑

x∈Xa∪Xt

(
2 · (Pa(x)− Pt(x))

Pa(x) + Pt(x)

)2

where Xa is the set of n-grams in author a’s profile (i.e. their
L most frequent n-grams), Xt is the set of n-grams in t,
Pa(x) is the normalised frequency of n-gram x in a’s tweets
(or 0 if x /∈ Xa), and Pt(x) is x’s normalised frequency in t.

This sum over all n-grams in Xa∪Xt is expensive to com-
pute for every author, for every test tweet. We exploit the
sparsity of our n-gram features by using an equivalent2 for-
mulation in terms of a sum over only Xa ∩Xt:

dcng(a, t) =
∑

x∈Xa∩Xt

(
2 · (Pa(x)− Pt(x))

Pa(x) + Pt(x)

)2

− 8 · |Xa ∩Xt|+ C

where C = 4 · (L + |Xt|) is a constant. We can efficiently
compute this sum (and |Xa ∩Xt|) using an inverted index.

2See notes on reformulating CNG in appendix A.1.

1

https://www.kaggle.com/c/whodunnit

Source Code Author Profile (SCAP) In SCAP[2] an
author’s profile comprises the set of the L most common
n-grams across the author’s tweets. dscap is then defined in
terms of the overlap of this set with that of the test tweet:

dscap(a, t) = 1− |Xa ∩Xt|/L
As dscap is already in terms of only Xa ∩Xt, we can effi-

ciently compute it for many authors using an inverted index.

Recentered Local Profile (RLP) RLP[5] builds profiles
from the L n-grams with the highest absolute ‘recentered’
normalised frequency, RPa(x) = Pa(x)− E(x) where Pa(x)
is the normalised frequency of n-gram x in a’s tweets, and
E(x) is the normalised frequency of x in all tweets. Defining
RPt(x) similarly, drlp is a cosine distance over Xa ∪Xt:

3

drlp(a, t) = 1−

∑
x∈Xa∪Xt

RPa(x) ·RPt(x)√ ∑
x∈Xa∪Xt

RPa(x)2 ·
∑

x∈Xa∪Xt

RPt(x)2

As with CNG, this calculation is prohibitively expensive
at our scale. An exact formulation in terms of only Xa ∩Xt

is not possible, so we approXimate RLP (XRLP) instead4:

dxrlp(a, t) = 1−

∑
x∈Xa∩Xt

RPa(x) · Pt(x)−
∑
x∈Xa

RPa(x) · E(x)√∑
x∈Xa

RPa(x)2 ·
∑
x∈Xt

RPt(x)2

The sum over Xa ∩Xt can be computed using an inverted
index, the sums over Xa are independent of t and can thus
be pre-computed, and the sum over Xt is a constant.

Smooth Pa Cross Entropy (SPaCE) We present a new
model for profile-based authorship attribution. SPaCE de-
fines a profile using the smoothed normalised n-gram fre-
quencies from the author’s tweets, including for unseen n-
grams. We interpret these normalised frequencies as a prob-
ability distribution over the set of all n-grams, and use the
cross entropy between the probability distributions of t and
a (plus a per-author offset capturing author prolificacy) as
our distance metric:

dspace(a, t) = − ln(P (a))/Nt −
∑
x∈Xt

Pt(x) ln(P ′a(x))

P (a) is the proportion of corpus tweets by a, Nt is the total
number of n-grams in t, and P ′a(x) is the smoothed proba-
bility of x. P ′a(x) is defined in terms of Pa(x) using either (i)
add-k smoothing; (ii) linear interpolation with E(x) by α;
or (iii) linear interpolation with E(x) by exp(−Na/K), an
amount decaying exponentially with Na, the total number
of n-grams in a’s tweets. K, α, and k are hyper-parameters.

While smoothing destroys the sparsity of profiles, it’s still
possible to efficiently compute dspace for many authors.5

3This is a corrected version of the formulation in [5], based on [4].
4See derivation of XRLP in appendix A.2, including addendum.
5See notes on computing SPaCE in appendix A.3.

Ensemble We create a simple ensemble in an attempt to
combine multiple dynamic feature classes in a single model.
We use SCAP as a base learner for its computational simplic-
ity, and attribute tweets to the author selected by the most
base models (i.e. by unweighted relative majority vote).

Experiments

In this section, we detail our experimental setup for tuning
and comparatively evaluating each combination of learner
and dynamic feature class, and we report our results.

Data split We are unable to effectively use our unlabelled
tweets to compare the accuracy of different learner/feature
class combinations, since the public leaderboard scores are
derived from a small number of tweets. In response, we
create our own, larger validation dataset by randomly par-
titioning our labelled dataset in two, as follows:

• Validation data: 69,838 tweets (20% of labelled data)
reserved for final evaluation of each learner/feature
class combination, to be used for final model selection.

• Reduced training data: Remaining 259,094 tweets
(80%), to be split further for use training and tuning
each learner/feature class combination.

Feature engineering Across our experiments with each
learner/feature class combination, we observe (1) character
n-grams are most effective for n = 4, 5, 6, and with raw
text input; (2) byte n-grams perform indistinguishably from
character n-grams; (3) word n-grams perform best for n =
2, where they benefit slightly from our pre-processing; and
(4) flexible pattern n-grams perform best with n = 2, 3.
Figure 1 exemplifies some of these relationships. For brevity,
we report only results from learners trained on these high-n
character n-grams and low-n word/flexible pattern n-grams.

2 3 4 5 6

n

10

15

20

A
cc

u
ra

cy
(%

)

bytes chars. words

raw text pre-proc. text

Figure 1: Effect of pre-processing and n on SCAP, fixed L = 300.

Hyper-parameter tuning For each learner/feature class
combination, we tune our hyper-parameter using grid search
optimisation on the reduced training data, as follows:

2

We tune the profile length L for SCAP using an 8-fold
cross-validated grid search over the reduced training data.

Evaluating each configuration of CNG, and XRLP is more
computationally expensive, so for these models we tune L
using holdout validation rather than 8-fold cross validation
(we train on 87.5% of the reduced training data, and select
the L giving the highest accuracy on the other 12.5%).

SPaCE models are our most computationally expensive to
evaluate, since smoothing removes the sparsity of profiles.
To tune the hyper-parameter for each smoothing method
(k for method i, α for method ii, and K for method iii)
we perform a grid search using holdout validation on the
reduced training data, evaluating on 1000 tweets (0.3%).
Due to time constraints, we only tune on character n-grams.

For our ensemble, we try various combinations of features,
and use holdout validation to select the best combination
(seven SCAP base models using character 2–6-grams, word
2-grams, and flexible pattern 2-grams, respectively).

Model selection After tuning each learner/feature class
combination as above, we re-train the tuned configurations
on the entire reduced training set, and measure accuracy
with our validation data. Table 1 summarises our results.

Acc. (%) Feature class

character word flex. patt.

Models n 4 5 6 2 2 3

CNG 25.4 26.2 26.4 20.5 13.8 12.5
SCAP 21.7 22.2 22.1 14.4 9.7 8.5
XRLP 18.6 18.4 17.4 12.4 9.4 10.0

SPaCE i 27.5 28.3 28.0 — — —
SPaCE ii 32.7 32.2 30.9 — — —
SPaCE iii 32.5 31.5 30.1 — — —

Ensemble —23.4—

Table 1: Tuned model accuracy on held-out validation data.

We re-train our best performing model/feature class com-
bination (SPaCE ii, character 4-grams) on the entire labelled
dataset for submission, achieving a public score of 34.7%
accuracy, and 35.0% accuracy on the private dataset.

Critical analysis

SPaCE We observe that SPaCE models outperform all
other models for character-level n-grams. Minimising dspace
corresponds to maximising tweet (log) likelihood assum-
ing tweets are sequences of n-grams drawn independently
from their author’s n-gram probability distribution. It’s
somewhat surprising to see this level of performance, given
the naivety of this assumption. However, SPaCE uses a
much richer profile representation than other methods, with
smoothing providing effective regularisation. This may help
it to make finer grained distinctions between authors.

The choice of smoothing method is critical. We see addi-
tive smoothing (i) outperformed by interpolation smoothing
(ii, iii). Additive smoothing corresponds to MAP estimation
of profiles with a prior distribution (over n-gram distribu-
tions) concentrated about the uniform n-gram distribution,
while interpolation methods take corpus-level frequency in-
formation into account. Since authors’ n-gram distribution
are indeed highly non-uniform, interpolation smoothing is
theoretically more appropriate.

CNG, SCAP, XRLP Recent works show RLP outper-
forms CNG on large documents with few authors[5], and
SCAP outperforms CNG when there is limited training data
per author[2]. In contrast, we see CNG outperforming both
SCAP and (X)RLP. XRLP may be under-performing due to
our small (per author) dataset—profiles based on recentered
frequencies may be unreliable when computed from noisy n-
gram counts. CNG’s under-performance in [2] with profiles
shorter than L may be due to a flaw in the distance metric,
which our reformulation implicitly overcomes (we correct for
short profiles by using a constant offset term, effectively as-
suming all authors have at least L n-grams).

Features We see character n-grams enabling greater accu-
racy compared to word and flexible pattern n-grams. Our
lack of data (per author) may be responsible; The same
amount of text from a given author yields more charac-
ter n-grams than word or flexible pattern n-grams, possibly
leading to a more discriminating learned profile.

We further observe word-based models consistently out-
performing flexible pattern-based models. Flexible pattern
n-grams are similar to word n-grams in their number of
n-grams per tweet, but they sacrifice content information
about an author’s text by retaining only HFWs, thereby
striking a different position on a style/content information
trade-off. While word n-grams are not necessarily superior
in general, it seems that content is more salient in our task.

Character, word and flexible pattern n-grams are individ-
ually incomplete representations of text. Combining the fea-
tures in the ensemble model must capture more information
about authorship, suggesting that our feature classes are
somewhat orthogonal. Future work may investigate more
sophisticated methods for combining multiple dynamic fea-
ture classes into a more robust model.

References

[1] M. Bhargava, P. Mehndiratta, and K. Asawa. “Stylometric analy-
sis for authorship attribution on twitter”. In: International Con-
ference on Big Data Analytics. 2013.

[2] G. Frantzeskou et al. “Effective identification of source code au-
thors using byte-level information”. In: Proceedings of the 28th
international conference on Software engineering. 2006.

[3] V. Kešelj et al. “N-gram-based author profiles for authorship at-
tribution”. In: Proceedings of the conference pacific association
for computational linguistics, PACLING. 2003.

3

[4] R. Layton. A tutorial on Local n-grams for Authorship At-
tribution. 2014. url: https : / / github . com / robertlayton /

authorship_tutorials/blob/master/LNGTutorial.ipynb (vis-
ited on 09/09/2019).

[5] R. Layton, P. Watters, and R. Dazeley. “Recentred local profiles
for authorship attribution”. In: Natural Language Engineering
(2012).

[6] A. Rocha et al. “Authorship attribution for social media foren-
sics”. In: IEEE Transactions on Information Forensics and Se-
curity (2016).

[7] R. Schwartz et al. “Authorship attribution of micro-messages”.
In: Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing. 2013.

Appendix

A.0 Inverted index computation

Consider computing a sum s(A) of some function f over the
elements in the intersection of two sets A and B, for many
A in some family A, with each |A| � |B|. That is,

s(A) =
∑

x∈A∩B
f(x) (for each A ∈ A)

The following naive algorithm (1) runs in O(|A|·|B|) time.
However, if each element of B is an element of only a small
number of A ∈ A, many iterations of the inner loop will
contribute nothing to the accumulators (because x /∈ A).

Algorithm 1 Naive computation of s(A) for A ∈ A
s← a mapping from sets A to empty accumulators s[A]
for A ∈ A do

for x ∈ B do
if x ∈ A then

s[A]← s[A] + f(x) . s[A] defaults to 0
end if

end for
end for . Now, s[A] contains s(A) for each A ∈ A

A well-known idea from information retrieval is to use an
index (or ‘inverted index’) to allow us to iterate over only the
sets A that will contribute to an accumulator for a particular
x ∈ B. Constructing this index takes as much time as the
previous algorithm, but construction time is offset by faster
computation of sums over many different Bs.

The idea is to precompute, for each (potential) element x,
the set of those A containing x. These are the As for which
x will contribute to the sum s(A). Then, for each x ∈ B, we
iterate through these so-called ‘posting lists’ instead of A.

Algorithm 2 runs in O(
∑

A∈A |A∩B|) time (not counting
constructing p), with no unnecessary iterations.

This enhancement applies to our situation. For profile-
based authorship attribution methods, we must compute
arg mina∈A d(a, t) for family of authors A and tweet t, over
a large number of tweets. Moreover, author profiles often
contain only a small number of the many possible n-grams

Algorithm 2 Indexed computation of s(A) for A ∈ A
p← a mapping from x ∈ B to sets p[x] = {A ∈ A | x ∈ A}
s← a mapping from sets A to empty accumulators s[A]
for x ∈ B do

for A ∈ p[x] do
s[A]← s[A] + f(x) . s[A] defaults to 0

end for
end for . Now, s[A] contains s(A)

that occur in test tweets, and so the sets of n-grams involved
are sparsely overlapping. Thus, where the distance metric
contains a sum over an intersection, we can calculate this
component quickly using an inverted index we compute at
training time.

A.1 Reformulating CNG

The CNG method’s distance metric is expressed as a sum
over Xa ∪ Xt, not an intersection. The inverted index
method does not apply directly in this situation. However,
using the set identities6

A ∪B = (A ∩B) + (A ∩Bc) + (Ac ∩B) (1)

A ∩Bc = A− (A ∩B) (2)

we can reformulate dcng in terms of Xa ∩Xt. First, define

Fa,t(x) =
(

2·(Pa(x)−Pt(x))
Pa(x)+Pt(x)

)2
for brevity. Then,

dcng(a, t) =
∑

x∈Xa∪Xt

(
2 · (Pa(x)− Pt(x))

Pa(x) + Pt(x)

)2

≡
∑

x∈Xa∪Xt

Fa,t(x)

=
∑

x∈Xa∩Xt

Fa,t(x) +
∑

x∈Xa∩Xc
t

Fa,t(x) +
∑

x∈Xc
a∩Xt

Fa,t(x) by (1)

But, if x ∈ Xa∩Xc
t then x /∈ Xt, so Pt(x) = 0, and Fa,t(x)

simplifies to
(

2·Pa(x)
Pa(x)

)2
= 4. Similarly, if x ∈ Xc

a ∩ Xt,

then x /∈ Xa, so Pa(x) = 0 (in CNG, profiles include only
normalised frequencies for n-grams in the top L for each
author, Xa; all other frequencies are forgotten). In this
case, Fa,t(x) = 4 also. So,

dcng(a, t) =
∑

x∈Xa∩Xt

Fa,t(x) +
∑

x∈Xa∩Xc
t

4 +
∑

x∈Xc
a∩Xt

4

=
∑

x∈Xa∩Xt

Fa,t(x) +
∑
x∈Xa

4−
∑

x∈Xa∩Xt

4 +
∑
x∈Xt

4−
∑

x∈Xa∩Xt

4

by (2)

=
∑

x∈Xa∩Xt

Fa,t(x) + 4 · (|Xa|+ |Xt| − 2 · |Xa ∩Xt|)

=
∑

x∈Xa∩Xt

(
2 · (Pa(x)− Pt(x))

Pa(x) + Pt(x)

)2

− 8 · |Xa ∩Xt|+ C

6A + B is set union for mutually exclusive sets A and B. A sum
over A + B equals the sum over A plus the sum over B. A− B is set
difference for B ⊂ A. A sum over A−B equals the sum over A minus
the sum over B.

4

https://github.com/robertlayton/authorship_tutorials/blob/master/LNGTutorial.ipynb
https://github.com/robertlayton/authorship_tutorials/blob/master/LNGTutorial.ipynb

where C = 4 · (|Xa| + |Xt|). Assuming all authors use at
least L n-grams throughout the training data, |Xa| = L,
and so this term is an additive constant which will not affect
arg mina∈A dcng(a, t). Even if an author has fewer than L
n-grams in their profile, it may be preferable to treat C as
constant, so as to avoid biasing dcng disproportionately in
favour of authors with few tweets. We can understand this
as implicitly ‘padding out’ profiles with zero frequencies for
all unseen n-grams before truncating profiles to the top L
most-frequent n-grams.

We can efficienty compute the remaining terms in this
formulation of dcng (the sum over Xa ∩ Xt, and |Xa ∩ Xt|
itself) using algorithm 2.

A.2 Approximating RLP

RLP’s drlp does not permit a reformulation in terms of only
Xa ∩Xt. However, we can approximate drlp efficiently.

Computing drlp(a, t), as formulated, requres computing
three sums, S1, S2, and S3:

S1︷ ︸︸ ︷∑
x∈Xa∪Xt

RPa(x)RPt(x)

S2︷ ︸︸ ︷∑
x∈Xa∪Xt

RPa(x)2

S3︷ ︸︸ ︷∑
x∈Xa∪Xt

RPt(x)2

Using identity (1), we can re-write S1:

S1 =
∑

x∈Xa∪Xt

RPa(x) ·RPt(x)

=
∑

x∈Xa∩Xt

RPa(x) ·RPt(x) +
∑

x∈Xa∩Xc
t

RPa(x) ·RPt(x)

+
∑

x∈Xc
a∩Xt

RPa(x) ·RPt(x)

If x ∈ Xa ∩ Xc
t , then x /∈ Xt. In that case, Pt(x) = 0,

and so RPt(x) = Pt(x) − E(x) = −E(x). Meanwhile, if
x ∈ Xc

a ∩ Ct, then x /∈ Xa. This does not mean that
Pa(x) = 0, but, for large L, it’s likely that RPa(x) ≈ 0
(recentered normalised frequencies significantly far from 0
are likely to be in Xa, by definition). Thus we can (approx-
imately) simplify S1 to:

S1 ≈
∑

x∈Xa∩Xt

RPa(x) ·RPt(x) +
∑

x∈Xa∩Xc
t

RPa(x) · (−E(x))

+
∑

x∈Xc
a∩Xt

0 ·RPt(x)

=
∑

x∈Xa∩Xt

RPa(x) ·RPt(x)−
∑

x∈Xa∩Xc
t

RPa(x) · E(x) + 0

=
∑

x∈Xa∩Xt

RPa(x) ·RPt(x) +
∑

x∈Xa∩Xt

RPa(x) · E(x)

−
∑
x∈Xa

RPa(x) · E(x) by (2)

=
∑

x∈Xa∩Xt

RPa(x) · (RPt(x) + E(x))−
∑
x∈Xa

RPa(x) · E(x)

=
∑

x∈Xa∩Xt

RPa(x) · Pt(x)−
∑
x∈Xa

RPa(x) · E(x)

For S2 and S3, note the following identity for sets:

A ∪B = A+ (Ac ∩B) (3)

Using (3), and the same kinds of simplifications as for S1,
we can rewrite S2 (approximately) as

S2 =
∑

x∈Xa∪Xt

RPa(x)2

=
∑
x∈Xa

RPa(x)2 +
∑

x∈Xc
a∩Xt

RPa(x)2 by (3)

≈
∑
x∈Xa

RPa(x)2 +
∑

x∈Xc
a∩Xt

02

=
∑
x∈Xa

RPa(x)2

and S3 (approximately) as

S3 =
∑

x∈Xa∪Xt

RPt(x)2

=
∑
x∈Xt

RPt(x)2 +
∑

x∈Xa∩Xc
t

RPt(x)2 by (3)

=
∑
x∈Xt

RPt(x)2 +
∑

x∈Xa∩Xc
t

(0− E(x))2

=
∑
x∈Xt

RPt(x)2 +
∑

x∈Xa∩Xc
t

E(x)2

≈
∑
x∈Xt

RPt(x)2 +
∑

x∈Xa∩Xc
t

02 (∗)

=
∑
x∈Xt

RPt(x)2

where in step (∗) we note that n-grams with high E(x) are
likely to appear in any given tweet, so E(x) should be small
for any x /∈ Xt. Thus, we define

dxrlp(a, t) = 1−

∑
x∈Xa∩Xt

RPa(x) · Pt(x)−
∑
x∈Xa

RPa(x) · E(x)√∑
x∈Xa

RPa(x)2 ·
∑
x∈Xt

RPt(x)2

All components of dxrlp(a, t) are either independent of a or
t (and can thus be precomputed) or are a sum over Xa ∩Xt

(and can thus be computed efficiently using algorithm 2).

Addendum Returning to step (∗), we note that an effi-
ciently computable and exact formulation of S3 is:

S3 =
∑
x∈Xt

RPt(x)2 +
∑

x∈Xa∩Xc
t

E(x)2

=
∑
x∈Xt

RPt(x)2 +
∑
x∈Xa

E(x)2 −
∑

x∈Xa∩Xt

E(x)2 by (2)

This leads to a slightly improved version of XRLP. Our ex-
periments reported above do not include this enhancement.

5

A.3 Computing with smoothed distributions

The profile smoothing we employ in the SPaCE method de-
stroys profile sparsity, by design. However, depending on
the choice of smoothing method, dspace may still permit an
efficient reformulation. For all three methods explored in
this report, this is the case.

To see why, first consider defining Xa for SPaCE profiles
to be the set of all n-grams with non-zero normalised fre-
quencies. If we can express dspace in terms of sums over
Xa ∩ Xt, we might hope to compute it efficiently using al-
gorithm 2, as for CNG, SCAP and XRLP—even without
truncating profiles to L, many n-grams will be unused by
many authors. The seeming difficulty arises because while
Pa(x) = 0 for x /∈ Xa, P ′a(x) 6= 0 due to smoothing. How-
ever, if P ′a(x) is some simple expression of a and x when
x /∈ Xa (namely an expression independent of either a or x,
or factorising into a product of such expressions) then we
may still reformulate dspace into an efficient form. For many
smoothing methods, this will be the case, since smoothing
gives each unseen n-gram some simple ‘default’ probability.
Defaults cannot be based on the normalised frequency of the
n-gram in the author’s tweets, because the latter is zero.

Define Da(x) to represent this ‘default’ probabability for
a given smoothing method. That is, Da(x) = P ′a(x)|Pa(x)=0.
Importantly, we must distinguish Da(x) and P ′a(x) when, for
a particular a and x, x ∈ Xa. In that case, Da(x) 6= P ′a(x),
because Da(x) represents the value that P ′a(x) would have
if we had seen some other n-gram every time we saw x in
the training tweets. For our smoothing methods:

P ′a(x) =
Counta(x) + k

Na + k|X|
→ Da(x) =

k

Na + k|X|
(additive smoothing)

P ′a(x) = (1− α)Pa(x) + αE(x) → Da(x) = αE(x)
(interpolation smoothing)

P ′a(x) = (1− αa)Pa(x) + αaE(x) → Da(x) = αaE(x)

αa = exp
(
−Na

K

)
(decaying interpolation smoothing)

where Counta(x) is the number of times x occurs in a’s
tweets; Na is the total number of n-grams in a’s tweets;
X is the set of all n-grams used by all authors, so |X| is
the number of distinct n-grams; E(x) is the normalised fre-
quency of n-gram x over all authors’ tweets; and k, α and
K are our hyperparameters.

Now, noting one final set identity

A = (A ∩B) + (A ∩Bc) (4)

and focusing on the sum over Xt in the original formula, we
may reformulate dspace(a, t) as follows:

−dspace(a, t)− ln(P (a))/Nt =
∑
x∈Xt

Pt(x) lnP ′a(x)

=
∑

x∈Xt∩Xa

Pt(x) lnP ′a(x) +
∑

x∈Xt∩Xc
a

Pt(x) lnP ′a(x) by (4)

=
∑

x∈Xt∩Xa

Pt(x) lnP ′a(x) +
∑

x∈Xt∩Xc
a

Pt(x) lnDa(x)

=
∑

x∈Xt∩Xa

Pt(x) lnP ′a(x) +
∑
x∈Xt

Pt(x) lnDa(x)

−
∑

x∈Xt∩Xa

Pt(x) lnDa(x) by (2)

=
∑

x∈Xt∩Xa

Pt(x) ln
P ′a(x)

Da(x)
+
∑
x∈Xt

Pt(x) lnDa(x)

The first component of the above sum can be efficiently
computed using algorithm 2. The second may be efficiently
computable, depending on the smoothing method.

For each of our smoothing methods, this sum may either
be precomputed, or is independent of a (and therefore un-
necessary in computing arg mina∈A dspace(a, t)):

i. For additive smoothing, Da(x) is independent of x, so∑
x∈Xt

Pt(x) lnDa(x) = ln

(
k

Na + k|X|

)
·
∑
x∈Xt

Pt(x)

But
∑

x∈Xt
Pt(x) = 1, so the whole sum simplifies to

ln

(
k

Na + k|X|

)
which can be precomputed per-author at training time.

ii. For interpolation smoothing, Da(x) is independent of
a, so the entire sum is independent of a and can be
dropped as an additive constant.∑

x∈Xt

Pt(x) lnDa(x) =
∑
x∈Xt

Pt(x) ln(αE(x))

iii. For exponentially decaying interpolation smoothing,
Da(x) = αaE(x) is independent of neither a nor x.
However, it is the product of a factor independent of x
(αa) and a factor independent of a (E(x)). Thus,∑
x∈Xt

Pt(x) lnDa(x) =
∑
x∈Xt

Pt(x) ln(αaE(x))

=
∑
x∈Xt

Pt(x) lnαa +
∑
x∈Xt

Pt(x) lnE(x)

= lnαa

∑
x∈Xt

Pt(x) +
∑
x∈Xt

Pt(x) lnE(x)

Again,
∑

x∈Xt
Pt(x) = 1, and the second sum can

be dropped for optimisation. Thus, the whole sum is
equivalent to

lnαa = ln exp

(
−Na

K

)
= −Na

K

Using these simplifications, it’s possible to efficiently com-
pute the minimum dspace(a, t) for many authors, despite
smoothing destroying the sparsity of profiles.

6

	Introduction
	Feature classes
	Learners
	Experiments
	Critical analysis
	Appendix

