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Abstract  

We develop an automated fact verification 
system for an in-class task derived from the 
FEVER challenge. Our system is a five-step 
pipeline comprising article retrieval, article 
selection, sentence selection, claim-evidence 
assessment, and label aggregation. We frame 
steps 2-5 as supervised classification tasks 
with features capturing entity linking, lexical 
ontology, co-reference resolution, and more. 
Our system achieves 77.4% document 
selection F1, 61.9% sentence selection F1 and 
51.8% label accuracy on the class test set, 
competitive results under all metrics. 

1 Introduction 

Our class project is to develop an automated fact 
verification system. We are provided a dataset of 
165.5k claims and a corpus of 5.1m Wikipedia article 
introductions, and are tasked with labelling each 
claim as “supported” (SUP), “refuted” (REF), or 
“not enough information” (NEI) with respect to the 
information in the corpus. If the claim is supported 
or refuted, we must also identify corpus sentences 
informing the judgement. This task and dataset are 
derived from the Fact Extraction and VERification 
(FEVER) task (Thorne et al., 2018a), a current 
benchmark for evaluating fact-verification systems. 

In this report, we describe our approach to the 
project task. We follow a multi-step approach similar 
to the FEVER baseline, breaking down the task into 
a total of five steps. Inspired by top entrants to the 
FEVER shared task competition (Thorne et al., 
2018b), and with original enhancements, our system 
overcomes two major weaknesses of the FEVER 
baseline system. First, we treat evidence retrieval as 
a sequence of task-specific classification problems, 
incorporating additional features beyond plain TF-
IDF similarity scores. Second, we improve upon the 
baseline’s evidence-concatenating claim-labelling 
step by instead evaluating all claim-evidence pairs 
and employing a dedicated claim-label aggregation 
classifier, leveraging knowledge from upstream. 

2 System Description 

Figure 1 illustrates our system. The pipeline divides 
into two high-level components: (1) Evidence 
retrieval; and (2) Claim labelling. In this section, 
we motivate and explain the design of each step.  

 
Figure 1: Illustration of our five-step pipeline system. 

2.1 Article Retrieval 

To enable a supervised classification approach to 
evidence selection we use Boolean retrieval as an 
efficient pre-filter, identifying a small selection of 
potentially relevant articles as classification inputs. 

Based on the heuristics that: (1) Entity mentions 
in claims are often central to verification; and (2) 
Wikipedia articles contain most of the information 
available on their titular entity, we construct an 
inverted index over the capitalised terms in all 5.1 
million Wikipedia article titles. We split on under-
scores and tokenise, with special handling for term-
inating periods (always denoting abbreviations in 
titles, e.g. “Tesla, Inc.”, but separated by a tokeniser). 

At prediction time, we use this index to retrieve all 
articles with titles appearing as a substring within the 
claim, excluding parenthesised text in the title. To 
speed up retrieval, we do not search the index for 
stopwords or lower-case terms from the claim, or for 
terms occurring in more than 15,000 titles—while 
these words may occur in matching titles, they are 
often accompanied by rarer words from the claim, or 
else the articles are unlikely to relate to the claim. 

2.2 Article Selection 

Given the set of retrieved articles for a claim, we train 
a classifier to predict the probability of each article 
containing evidence sentences. 
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As a baseline, we implement a logistic regression 
classifier following UCL’s HexaF system (Yoneda et 
al., 2018). Features include title position within 
claim, title stopwords and parenthesised text, and 
normalised token overlap between claim and article 
text (with special treatment for first sentences). Like 
UCL, we train on a balanced set of articles. We draw 
negative examples from upstream article retrieval. 

We incorporate additional features geared towards 
entity disambiguation: Capitalisation of adjacent 
terms to the title within claim text; IDF-weighted 
token overlap between claim and article text; Token 
bigram overlap; and capitalised token overlap. 

We further improve performance by creating an 
imbalanced training set (140k positive examples and 
1015k negative examples) more closely reflecting 
the prediction-time distribution, and by employing a 
multi-layer perceptron (MLP) classifier with a single 
hidden layer of 30 units and ReLU nonlinearities 
(tuning architecture with the development data). We 
also experiment with a Random Forest classifier and 
with different training label distributions. 

2.3 Sentence Selection 

Given the sentences of selected articles for a claim, 
we train a classifier to predict the probability of each 
sentence being evidence (for or against) the claim. 
Chosen sentences become the pipeline’s predicted 
evidence. Moreover, this step serves as a pre-filter 
increasing the quality of sentences passed on to claim 
labelling, which is sensitive to irrelevant inputs. 

Sentence classification features include all token 
overlap features from article selection at the claim-
sentence level, along with the article selection score. 
Furthermore, we POS-tag the text and lemmatise 
with WordNet’s morphological lemmatiser (Miller, 
1995), allowing us to capture semantic relatedness 
between the claim and sentence with additional 
features: Noun overlap; cardinal number overlap; 
cardinal number ‘shape’ overlap (based on number 
of digits); and synonym, antonym, meronym, 
holonym, hyponym, and hypernym overlap, 
reflecting some of the meaning-altering semantic 
mutations applied during FEVER claim generation. 

We create an imbalanced training set (with 149k 
positive examples and 309k negative examples, both 
drawn from the sentences of selected articles) to train 
an MLP classifier (tuning with development data to 
one hidden layer, 60 units). We also try other training 
label distributions and a logistic regression classifier. 

At prediction time, we truncate the predictions to 
the 2 most probable sentences, observing a small 
increase in sentence selection F1 and downstream 
label accuracy on the development data. 

2.4 Claim-Evidence Assessment 

We next predict claim label probabilities (SUP, REF, 
NEI) based on individual selected sentences, creating 
inputs for the final label aggregation step. 

We use an Enhanced Sequential Inference Model  
(ESIM) for Textual Entailment (TE) (Chen et al., 
2017) pre-trained  (AllenNLP, 2018) on the SNLI 
dataset (Bowman et al., 2015) using ELMo 
embeddings (Peters et al., 2018). We also experiment 
with Decomposable Attention (DA) (Parikh et al., 
2016), an alternative TE model. 

Many evidence sentences contain pronouns 
referencing the article’s main entity, but such 
anaphors are opaque to a TE model. Hence, we see 
performance improvements by employing a simple 
co-reference resolution “trick” proposed for UCL’s 
HexaF system: We prepend the article title’s entity to 
each sentence, separated by a colon, so “He is the 
…” becomes “Sherlock Holmes: He is the …”. 

2.5 Label Aggregation 

Our final classifier aggregates per-sentence claim-
label probabilities from the previous step into a final 
claim label, leveraging upstream knowledge (scores 
and features from the sentence selection step). 

Our motivation for creating an aggregation step is 
twofold. Firstly, it allows us to fine-tune the label 
prediction with this task’s data instead of relying 
entirely on pre-trained models. Secondly, it 
eliminates the assumption that sentences can be 
sensibly concatenated to be fed into an RTE model. 
We experiment with this assumption using a 
concatenating evidence aggregator built with an 
ESIM+ELMo TE model. 

 We concatenate the feature vectors and label 
probabilities for each of the at-most two predicted 
sentences, and synthesise training examples from 
upstream retrieved evidence to train an MLP 
classifier with two hidden layers of 15 and 2 units 
using ReLU activation (tuning architecture on the 
development data). Finally, we compare to a baseline  
logical aggregation strategy following the rules 
described by (Yoneda et al., 2018).  

3 Experiments 

In this section, we detail the experimental setup for 
evaluating and tuning each of our models and report 
the results motivating our design decisions.  

3.1 Article Retrieval 

The article retrieval task is driven by recall. Thus, we 
record the average article-level evidence recall over 
all claims in the development data to evaluate the 
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effect of ignoring terms occurring in many article 
titles. Figure 2 shows the diminishing returns present 
as we approach our setting of 15,000, indicating that 
we are already processing most terms important for 
title matching using this setting. Our final model 
achieves average article recall of 89.2% at this step. 

 
Figure 2: Average article-level evidence recall. 

3.2 Article Selection 

We evaluate article selection using average article-
level precision, recall, and F1 calculated over claims 
in the development data with inputs drawn from our 
best article retrieval model. 

 
Figure 3: Article selection average precision, recall, F1. 

 Notably, Figure 3 shows the significant impact of 
training label distribution on the precision-recall 
trade-off for the basic logistic regression model. The 
highest F1 (76.6%) comes from training with 7 times 
more negative examples (cf. a balanced training set; 
72.2%). We fix this distribution and explore the 
effect of adding entity disambiguation features on 
each classifier’s performance. Our best model (MLP, 
additional features) scores 88.3% average precision 
and 76.8% average recall, yielding 82.1% F1. 

3.3 Sentence Selection 

We evaluate sentence selection in pipeline context 
with input sentences from upstream selected articles, 
recording average sentence-level precision, recall, 
and F1 over all claims in the development data. 

Figure 4 highlights the effect of training label 
distribution on the precision-recall trade-off for each 
classifier. For both classifiers, we observe the best F1 
score with 2 negative examples per positive example. 
Regardless of training label distribution, the MLP 
consistently outperforms logistic regression. Our 
best model scores 65.6% average precision and 

56.9% average recall, yielding 61.0% F1 (before 
applying truncation). 

 
Figure 4: Sentence selection avg. precision, recall, F1. 

3.4 Claim-Evidence Assessment 

We perform oracle isolation testing using the devset 
with label accuracy as our performance indicator. 
We use gold evidence input for SUP and REF claims 
and upstream retrieved sentences for NEI claims. We 
employ the baseline logical aggregation model 
described above to decouple this step from the next 
while still producing a label during isolation testing. 
 

Co-ref / TE model DA ESIM 
No co-reference resolution 55.7% 58.1% 
Co-reference resolution “trick” 58.2% 61.5% 
Table 1: Label accuracy for TE oracle experiments. 

Table 1 shows results from four experiments on the 
impact of TE model selection and co-reference 
resolution. We observe ESIM outperforming DA and 
co-reference resolution improving accuracy; hence, 
we select ESIM + co-reference resolution as our 
claim-evidence assessment model for the pipeline. 

3.5 Label Aggregation 

To experiment with label aggregation models, we fix 
upstream models to their best performing parameters 
and conduct full-pipeline tests on the devset using 
label accuracy as the main performance metric. 
 

Aggregator Concatenating Logical MLP 
Label Acc. 48.7% 48.7% 52.1% 
Table 2: Results for label aggregation experiments. 

Table 2 compares label accuracy performance of our 
best concatenation model, the baseline logical 
aggregator and our final MLP aggregator. We 
observe that the former strategies achieve similar 
performance and the MLP outperforms both. This 
empirical result motivates our introduction of a fifth 
‘label aggregation’ step as discussed in section 2.5. 

4 Final Approach Performance  

Table 3 shows our final pipeline model’s performance 
on the provided development and test sets. The 
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performance on both sets is similar, indicating we are 
unlikely to have overfit our models while tuning and 
experimenting with the development data. 

 
 Doc. F1 Sent. F1 Lab. Accu. 

Devset 77.5% 61.5% 52.1% 
Testset 77.4% 61.9% 51.8% 

Table 3: Final approach performance. 

The test set results also show that our system 
surpasses the competitive threshold established for 
the in-class competition for all performance metrics. 

5 Error Analysis 

The confusion matrix in Figure 5 illustrates the two 
main classes of claim labelling errors our pipeline 
system makes, framing our error analysis. 

 
Figure 5: Confusion matrix over development data. 

5.1 Evidence Retrieval 

The no ev. row represent cases where the evidence 
retrieval steps find no evidence for a claim, in which 
case we cannot proceed with claim labelling, and 
predict NEI. Such cases represent most SUP and 
REF claim misclassifications: Evidence retrieval’s 
recall errors impact label accuracy most severely. 

Evidence sentences are lost variously throughout 
steps 1-3. In particular: (1) Exact title-matching 
misses many evidence-containing articles, mostly 
when titles are not directly mentioned in a claim (e.g. 
article “Peru” supports the claim “Chile is in Asia”). 
However, we retain at least one evidence-containing 
article (e.g. “Chile”) in all but 147 cases. (2) Article 
selection filters out all remaining evidence for 420 
claims. Our model is over-sensitive to whether the 
title is at the beginning of the claim (e.g. accepting 
the article “Daag (1973 film)” for “Daag is a film” 
but not “a Daag is a film”). Moreover, token overlap 
features disadvantage articles with refuting evidence 
(e.g. “Daag is a painting” barely overlaps with the 
refuting article). (3) Sentence selection rejects all 
remaining evidence sentences for a further 588 
claims and some remaining sentences for 319 other 
claims. In many cases, the rejected sentences just 
don’t have enough overlap with the claim text (they 
evidence the claim only partially or indirectly). Often 
rejected refuting sentences differ from the claim in 

ways not captured by our ontological features, 
especially when the contradictory terms are names 
(e.g. sentence “Angelsberg [is in] Luxembourg” v.s 
claim “Angelsberg is in Canada”). 

5.2 Claim Labelling 

The high confusion in the NEI column highlights the 
trouble our claim labelling models have realising that 
the given evidence does not contain enough 
information to make a judgement, resulting in 
significant mislabellings for NEI claims. 

Further isolated oracle tests of the claim-evidence 
assessment module reveal that the ESIM+ELMo pre-
trained model misclassifies 63% of NEI claims, 
suggesting that the pre-trained model is the root 
cause of the problem. This is likely due to the lack of 
custom training, compounded with the strong 
assumption that SNLI’s Entails, Contradicts and 
Neutral labels map to SUP, REF and NEI; e.g. the 
NEI claim “Yandex operates in Luxembourg” is 
labelled as REF given the evidence “Yandex operates 
the largest search engine in Russia” because it would 
be a contradiction under SNLI evidence standards. 

6 Conclusions and Future Work 

We designed and evaluated a 5-step fact-verification 
system, with class-competitive results. Nevertheless, 
Section 5 highlights clear shortcomings in each step. 

Directions for improvement include: (1) Indexing 
articles beyond titles to find evidence-containing 
articles not mentioned in claims; (2) Enriching our 
representation of claims and sentences to capture the 
kind of indirect semantic relatedness that constitutes 
evidence, for or against a claim (a more nuanced 
relation than IR’s traditional notion of “similarity”) 
—We could improve on our token-level ontological 
relationship extraction e.g. by using full sentence 
embeddings or parsing-based structural embeddings; 
(3) Training the TE model on the significant FEVER 
dataset, sensitising it to task-specific standards of 
evidence and the nature of Wikipedia as a corpus, 
and possibly extending the model to explicitly cater 
to the small proportion of FEVER claims requiring 
composition of multiple evidence sentences (which 
we have not begun to properly address); and (4) 
Exploiting Wikipedia’s networked structure for both 
entity disambiguation and evidence “expansion” (i.e. 
by augmenting retrieved sentences with additional 
information about each entity mentioned, or “linked 
to”, in the sentence)—While this structure may not 
exist beyond Wikipedia, recent advances in Entity 
Linking may allow us to infer structure over other 
corpora (Raiman and Raiman, 2018), enabling fact 
verification in a more general setting. 
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Supplemental Material 

A.1 Related Works 

The closest related works are the systems created for 
the 2018 FEVER shared task competition (Thorne et 
al., 2018b). Our task differs from the FEVER task in 
the conditions used to evaluate the supplied 
evidence: We use a relaxed criterion where, in the 
small proportion of cases where multiple sentences 
are required to form a judgement, each of these 
sentences is considered sufficient evidence (the 
FEVER task requires that a “complete” set of 
evidence sentences be retrieved). Nevertheless, we 
expect the knowledge and techniques developed for 
either task to be broadly transferable. 

The FEVER task was originally framed as 
comprising three steps: (1) Document selection: 
Retrieve Wikipedia articles that contain relevant 
information for assessing a claim; (2) Sentence 
selection: Extract from these articles any sentences 
necessary for making a judgement; and (3) Natural 
language inference (NLI): Determine whether the 
evidence supports or refutes the claim, or that there 
is not enough information in the corpus to decide. 

In this section, we summarize the most interesting 
patterns from the shared task participants, following 
the task breakdown proposed by the FEVER authors. 

A.1.1 Document Selection 

While the FEVER baseline cast article selection as a 
traditional Information Retrieval (IR) problem 
(treating the claim as a "query" and using TF-IDF-
based similarity metrics to find "relevant" articles) 
we, and many shared task entrants, observed that the 
task is better framed as end-to-end Named Entity 
Recognition and Disambiguation, also known as 
Entity Linking (EL) or, aptly, “Wikification” (many 
EL datasets are derived from Wikipedia). State-of-
the-art EL systems use deep learning backed by an 
inferred entity type system (Raiman and Raiman, 
2018). 

In contrast, many shared task entrants used 
heuristic approaches scanning claims for entity 
mentions using, variously, Named Entity 
Recognition (e.g Nie et al., 2018), Constituency 
Parsing for extracting Noun Phrases (e.g 
Hanselowski et al., 2018), capitalized expression 
detection (e.g. Malon, 2019), or simple substring 
matching (e.g. Yoneda et al., 2018), retrieving 
Wikipedia articles whose titles match the mentioned 
entities. This simple approach to EL exploits the 
standardised structure of Wikipedia articles and their 
titles and performs accurately on much of the 
FEVER data. We adopt a similar approach. 

A.1.2 Sentence Selection 

The shared task saw two prominent approaches to 
sentence selection. Some participants preserved the 
separation between the sentence selection and NLI 
steps from the baseline (e.g. Yoneda et al., 2018; 
Hanselowski et al., 2018). These systems 
successfully employed claim-sentence similarity-
based ranking or supervised classification 
approaches. 

Other entrants (e.g. Nie et al., 2018) merged 
sentence selection and NLI into a single step, 
typically using a neural network. These coupled 
systems incorporated features related to the semantic 
overlap between sentence and claim, such as by 
using word embeddings or ontological relationships 
between words. 

We adopt the former approach (in particular, 
supervised classification), but enrich our classifier 
with additional semantic and ontological features. 

A.1.3 Natural Language Inference (NLI) 

Following the baseline, all participants framed the 
NLI task as a supervised classification task similar to 
the Stanford Natural Language Inference task 
(SNLI) (Bowman et al., 2015).  

There are some important differences between the 
FEVER data and SNLI data. In particular, the SNLI 
examples contain shorter sentences and use a simpler 
vocabulary than the FEVER examples (Malon, 
2019). In response, many participants employed 
successful models built for SNLI after re-training 
them on FEVER data. Some popular pre-trained 
models were the Enhanced Sequential Inference 
Model (ESIM) (Chen et al., 2017), and 
Decomposable Attention (DA) (Parikh et al., 2016). 

16.82% of FEVER claims require more than one 
sentence to form appropriate evidence for deducing 
the appropriate claim label. More generally, the 
document and sentence selection steps may identify 
more than one sentence in relation to a claim. A key 
challenge in porting SNLI models to the FEVER 
setting is thus the handling of multi-sentence 
premises. The two main approaches were (1) pre-
concatenation of all identified evidence to form a 
single premise, and (2) individual classification of all 
claim-evidence pairs followed by some form of label 
aggregation. Aggregation strategies ranged from 
rule-based techniques (Malon, 2019) to supervised 
classification including with attention-based neural 
models (Yoneda et al., 2018; Hanselowski et al., 
2018). 


