Quiz: Are YOU susceptible to
goal misgeneralization??

Training: Deployment:
Imagine you trained in these mazes and found that Now what do you??
the got reward... :

Goal misgeneralization: Learning a policy for a proxy goal instead of the
intended goal from an ambiguous training environment distribution.

Problem Setting:
Proxy-Distinguishing Distribution Shift

Intended goal:
Get to the

(no matter where
it is in the maze)

1. Define goals...

Proxy goal:
Get to the

of the maze
(even if it is empty)

2. Classify levels...
Non-distinguishing levels: policies that Distinguishing levels: pursuing proxy (1)
pursue either goal perform well prevents pursuing the intended goal (2)

3. Distribution shift!
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We show that training with
the maximum expected value objective

IS susceptible to goal misgeneralization!

Approximate Maximum Expected Value (MEV) objective:
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Theorem 1: Ifa<¢g, some MEV policies pursue the proxy goal:
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Experiments with Domain Randomization:

We train with domain randomization (implementing the MEV objective). We
use training distributions with varying a (proportion of distinguishing levels).
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On the other hand, training with
the minimax expected regret objective

IS robust to goal misgeneralization!

Approximate MiniMax Expected Regret (MMER) objective:

~MMER - arg-e-min  max Regret(m, A)

Approx. minimization Inner maximization Expected Regret:
within some threshold worst-case level distr. Value(n™, level) — Value(, level)
€ 2 0 of optimal policy relative to policy averaged over level distribution

Theorem 2: All MMER policies pursue the intended goal:
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Experiments with Unsupervised Environment Design:

Train with unsupervised environment design (implementing MMER objective).
We use four increasingly powerful adversarial designers and regret estimators.
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