Mitigating Goal Misgeneralization via Minimax Regret

Karim Abdel Sadek(=) University of California, Berkeley Matthew Farrugia-Roberts(=) University of Oxford

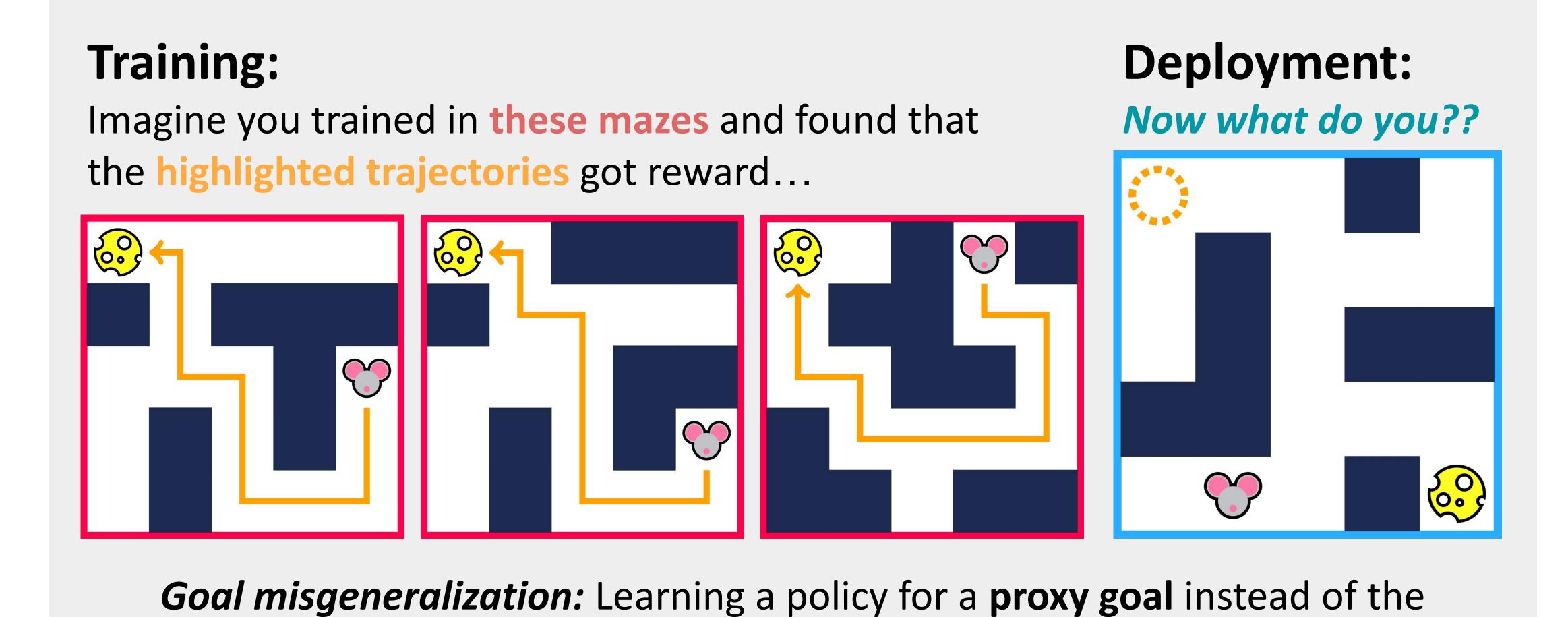
Usman Anwar University of Cambridge

Hannah Erlebach University College London **Christian Schroeder de Witt** University of Oxford

David Krueger Mila, University of Montreal

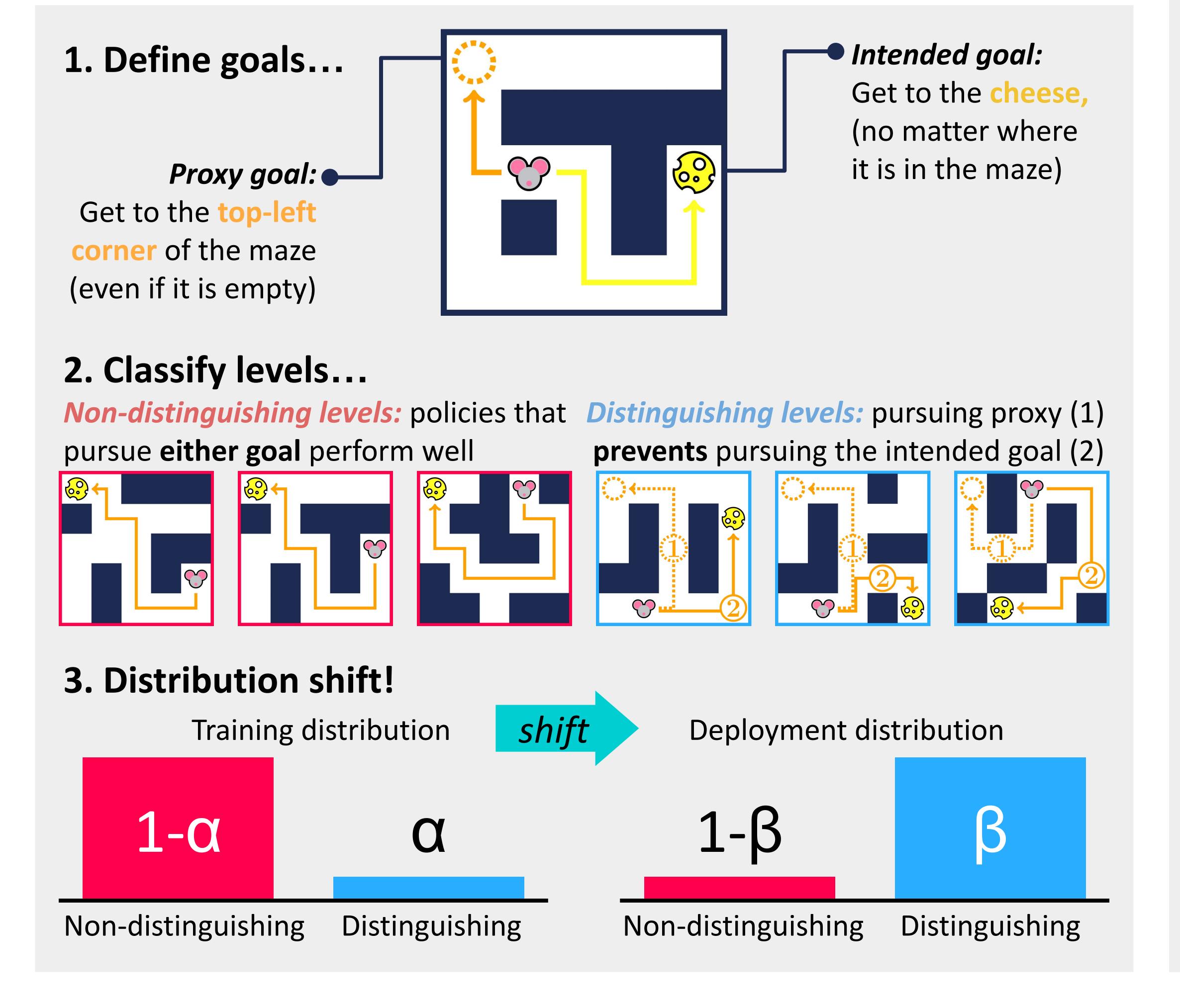
Michael Dennis Google DeepMind

Quiz: Are YOU susceptible to goal misgeneralization??



intended goal from an ambiguous training environment distribution.

Proxy-Distinguishing Distribution Shift



We show that training with

the maximum expected value objective is susceptible to goal misgeneralization!

Approximate Maximum Expected Value (MEV) objective:

$$\pi^{\text{MEV}} \in \underset{\pi \in \Pi}{\text{arg-}\varepsilon\text{-max}} \text{Value}(\pi, \Lambda^{\text{Train}})$$

Approx. maximization within some threshold

 $\varepsilon \ge 0$ of optimal policy

Expected return over some fixed

level distribution

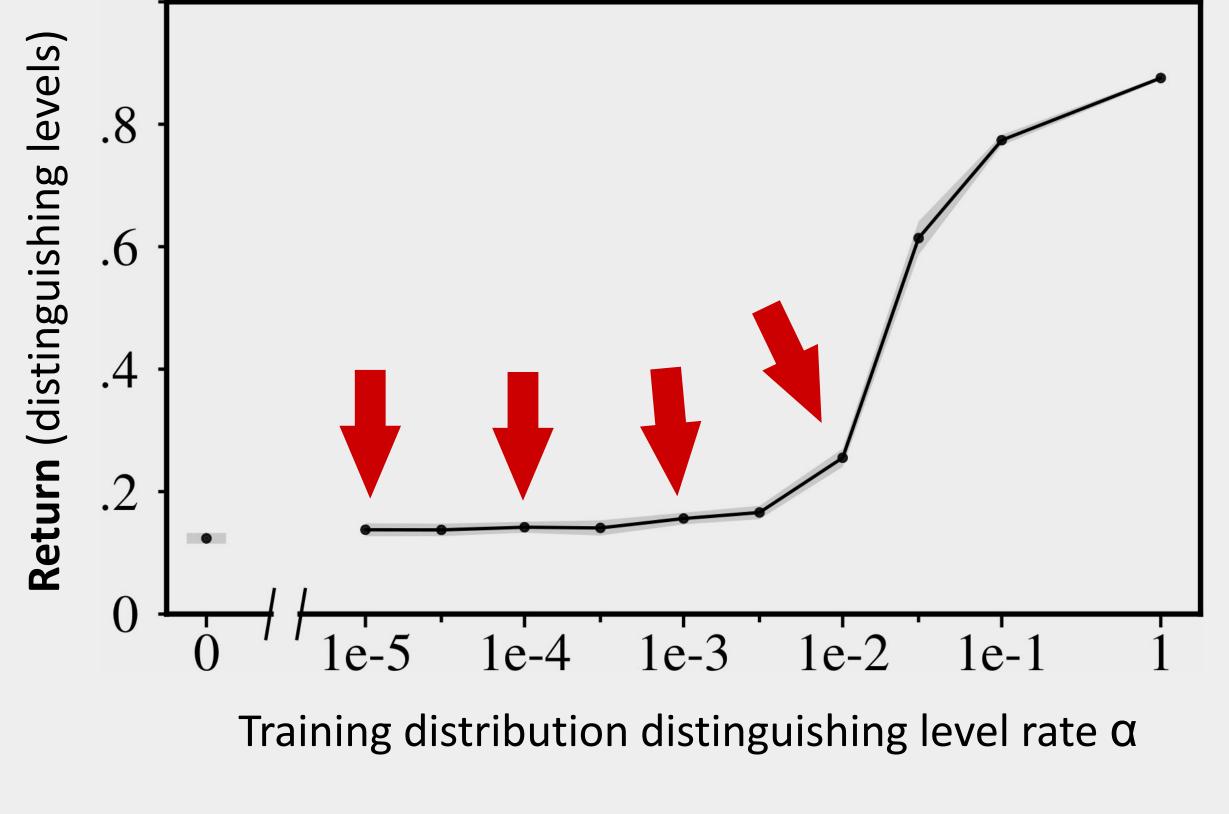
Training distribution of non-distinguishing / distinguishing levels

Theorem 1: If $\alpha \leq \epsilon$, some MEV policies pursue the proxy goal:

$$\exists \pi^{\text{MEV}}; \pi^{\text{MEV}} \in \underset{\pi \in \Pi}{\operatorname{arg max ProxyValue}(\pi, \Lambda^{\text{Deploy}})} \\ \qquad \qquad \qquad \underset{\pi \in \Pi}{} \\ \text{arg-}\beta\text{-max Value}(\pi, \Lambda^{\text{Deploy}})$$

Experiments with Domain Randomization:

We train with domain randomization (implementing the MEV objective). We use training distributions with varying α (proportion of distinguishing levels).



domain randzn. learns a policy that **fails to** pursue the intended goal on distinguishing levels...

When α < 0.03,

... instead the policy pursues the proxy goal on these levels, leading to misgeneralization in deployment.

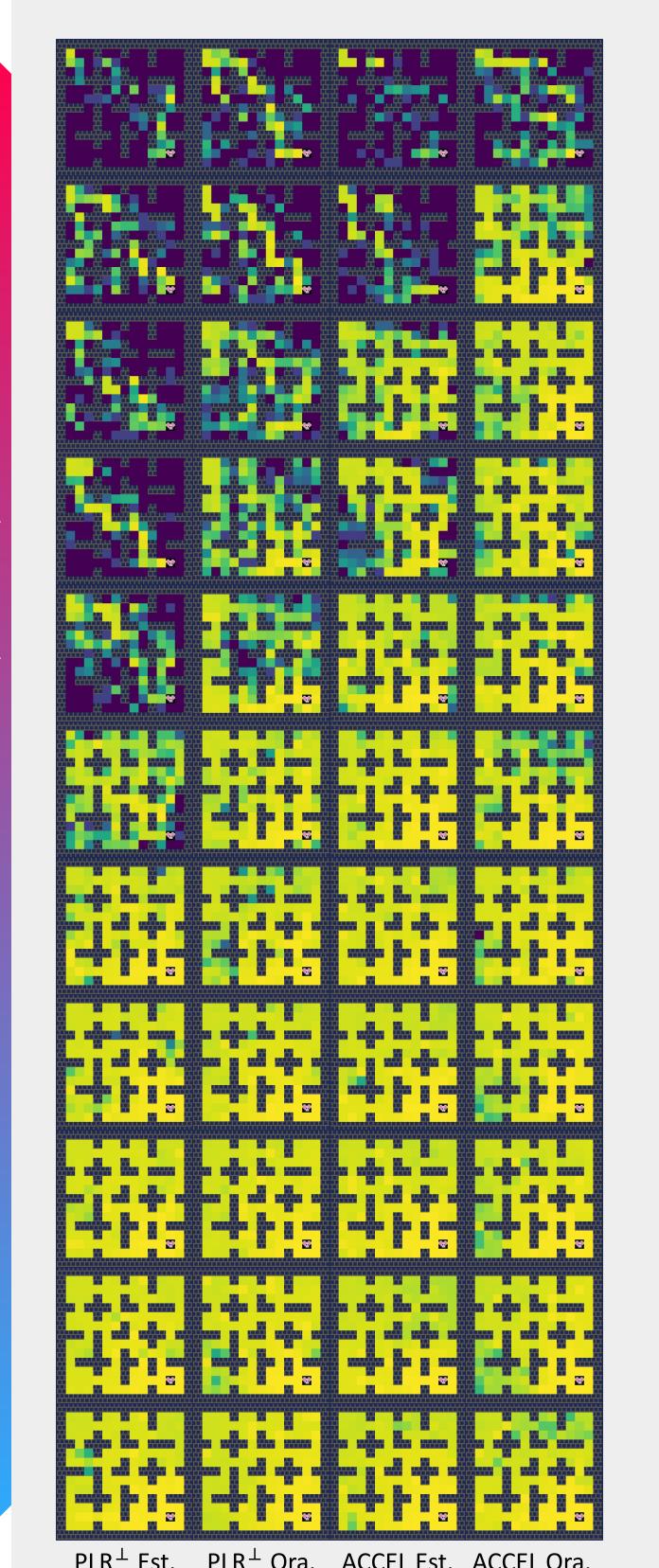
when cheese is there

Blind

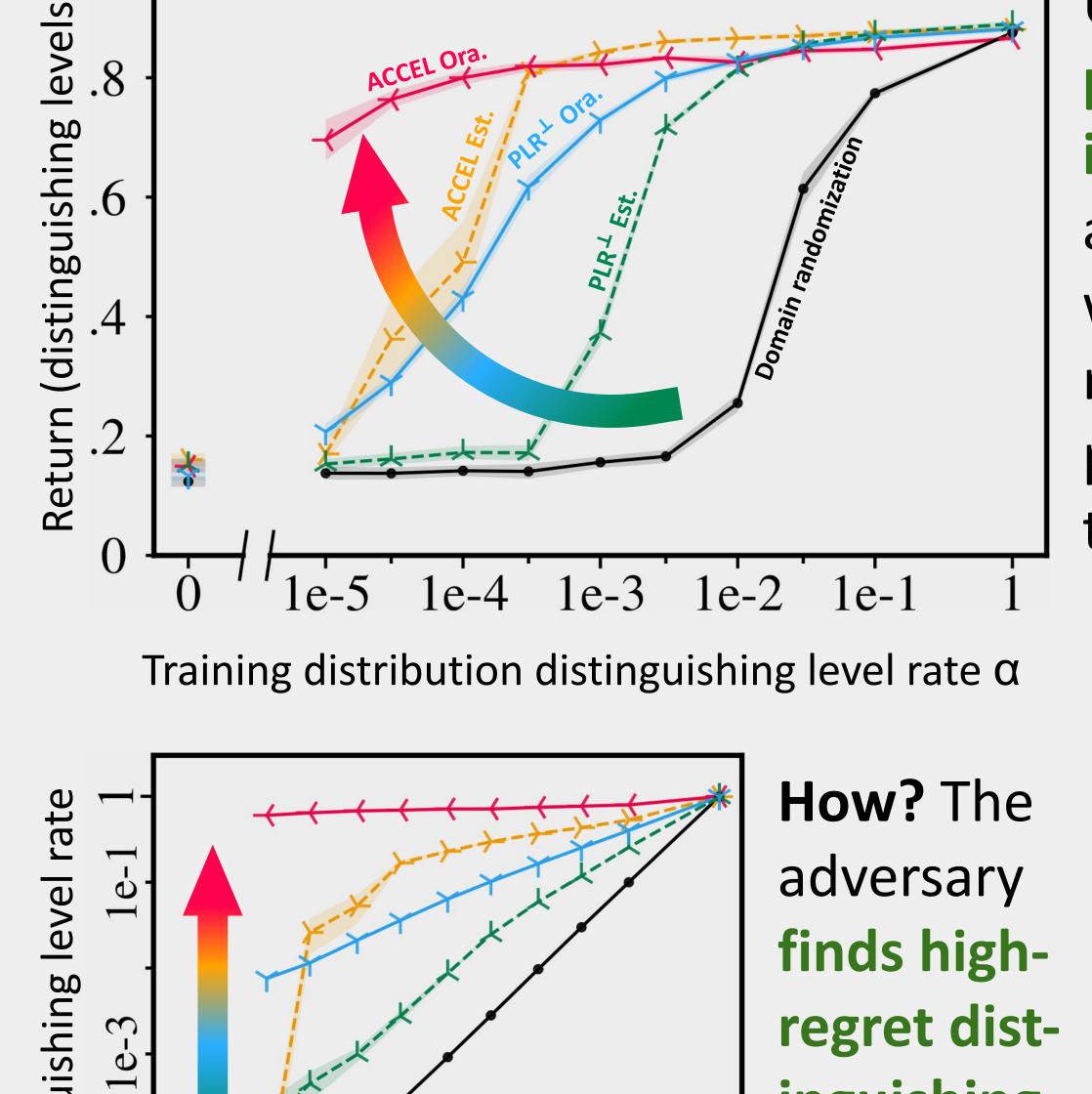
For

each

spots!



 $\pi \in \Pi$ Train with unsupervised environment design (implementing MMER objective). **UED** policies pursue the



On the other hand, training with

the minimax expected regret objective is robust to goal misgeneralization!

Approximate MiniMax Expected Regret (MMER) objective:

$$\pi^{\text{MMER}} \in \underset{\pi \in \Pi}{\text{arg-}\varepsilon\text{-min}} \underset{\Lambda \in \Delta(\text{lvl.})}{\text{max}} \underset{\text{Regret}}{\text{Regret}}(\pi, \Lambda)$$

Approx. minimization Inner maximization Expected Regret:

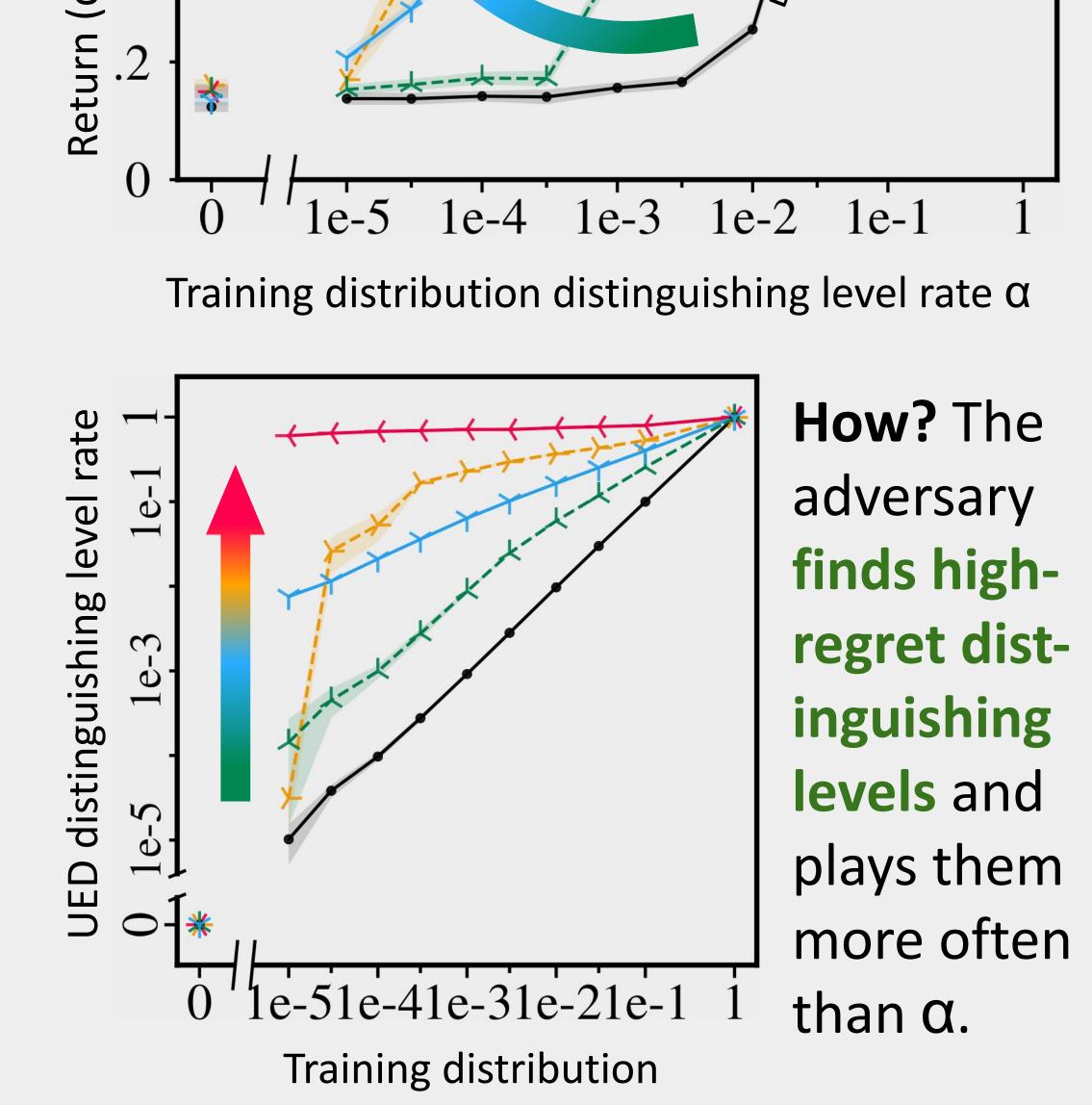
within some threshold worst-case level distr. Value(π^* , level) — Value(π , level) $\varepsilon \ge 0$ of optimal policy averaged over level distribution relative to policy

Theorem 2: All MMER policies pursue the intended goal:

$$\forall \pi^{\text{MMER}}, \pi^{\text{MMER}} \in \underset{\pi \in \Pi}{\text{arg-}\varepsilon\text{-max Value}}(\pi, \Lambda^{\text{Deploy}})$$

Experiments with Unsupervised Environment Design:

We use four increasingly powerful adversarial designers and regret estimators.



distinguishing level rate α

See paper for...

+ theory details

intended goal

at many low α

where domain

randomization

policy pursued

the proxy goal.

+ more results

+ more environments

+ more methods

