
On the other hand, training with

the minimax expected regret objective
is robust to goal misgeneralization!

We show that training with

the maximum expected value objective
is susceptible to goal misgeneralization!
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When α < 0.03,
domain randzn.
learns a policy 
that fails to 
pursue the 
intended goal 
on distinguish-
ing levels...

… instead the 
policy pursues 
the proxy goal
on these levels,
leading to mis-
generalization
in deployment.
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Experiments with Domain Randomization:
We train with domain randomization (implementing the MEV objective). We 
use training distributions with varying α (proportion of distinguishing levels).

Experiments with Unsupervised Environment Design:
Train with unsupervised environment design (implementing MMER objective).
We use four increasingly powerful adversarial designers and regret estimators.

Problem Setting:
Proxy-Distinguishing Distribution Shift

1. Define goals… Intended goal:
Get to the cheese, 
(no matter where
it is in the maze)Proxy goal:

Get to the top-left 
corner of the maze
(even if it is empty)

2. Classify levels…
Non-distinguishing levels: policies that 
pursue either goal perform well

Distinguishing levels: pursuing proxy (1) 
prevents pursuing the intended goal (2)

3. Distribution shift!

1-α α β1-β

shift

Non-distinguishing     Distinguishing              Non-distinguishing     Distinguishing

Training distribution Deployment distribution

Quiz: Are YOU susceptible to
goal misgeneralization??

Goal misgeneralization: Learning a policy for a proxy goal instead of the 
intended goal from an ambiguous training environment distribution.

Training:
Imagine you trained in these mazes and found that
the highlighted trajectories got reward…

Deployment:
Now what do you?? 
do?

See paper for…
 + theory details
 + more results
 + more environ-
    ments
 + more methods

UED policies 
pursue the 
intended goal 
at many low α 
where domain 
randomization
policy pursued 
the proxy goal.
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How? The 
adversary 
finds high-
regret dist-
inguishing 
levels and 
plays them 
more often 
than α.

Training distribution 
distinguishing level rate α
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Approximate Maximum Expected Value (MEV) objective:

Approx. maximization 
within some threshold 
ε ≥ 0 of optimal policy

Expected return
over some fixed 
level distribution

Training distribution
of non-distinguishing
/ distinguishing levels

Approximate MiniMax Expected Regret (MMER) objective:

Expected Regret:

averaged over level distribution

Approx. minimization 
within some threshold 
ε ≥ 0 of optimal policy

Inner maximization
worst-case level distr. 

relative to policy

Theorem 2: All MMER policies pursue the intended goal:Theorem 1: If α ≤ ε, some MEV policies pursue the proxy goal:


